latest version v1.9 - last update 10 Apr 2010 |
Abstract class, parent of all supervised instance classifiers. More...
#include <ltiSupervisedInstanceClassifier.h>
Public Member Functions | |
supervisedInstanceClassifier () | |
supervisedInstanceClassifier (const supervisedInstanceClassifier &other) | |
virtual const char * | getTypeName () const |
supervisedInstanceClassifier & | copy (const supervisedInstanceClassifier &other) |
supervisedInstanceClassifier & | operator= (const supervisedInstanceClassifier &other) |
const parameters & | getParameters () const |
virtual bool | train (const dmatrix &input, const ivector &ids)=0 |
virtual bool | classify (const dvector &feature, outputVector &result) const =0 |
Protected Member Functions | |
bool | makeOutputTemplate (const int &outSize, const dmatrix &data, const ivector &ids) |
Abstract class, parent of all supervised instance classifiers.
This class defines the interface for all supervised train methods which are not dependant on time.
lti::supervisedInstanceClassifier::supervisedInstanceClassifier | ( | ) |
default constructor
lti::supervisedInstanceClassifier::supervisedInstanceClassifier | ( | const supervisedInstanceClassifier & | other | ) |
copy constructor
other | the object to be copied |
virtual bool lti::supervisedInstanceClassifier::classify | ( | const dvector & | feature, | |
outputVector & | result | |||
) | const [pure virtual] |
Classification.
Classifies the feature and returns the outputVector with the classification result.
feature | the vector to be classified | |
result | the result of the classification |
Implemented in lti::crispDecisionTree, lti::kNNClassifier, lti::lvq, lti::MLP, lti::rbf, lti::shClassifier, and lti::svm.
supervisedInstanceClassifier& lti::supervisedInstanceClassifier::copy | ( | const supervisedInstanceClassifier & | other | ) |
copy data of "other" functor.
other | the functor to be copied |
Reimplemented from lti::classifier.
Reimplemented in lti::crispDecisionTree, lti::decisionTree, lti::kNNClassifier, lti::lvq, lti::manualCrispDecisionTree, lti::MLP, lti::rbf, lti::shClassifier, and lti::svm.
Referenced by operator=().
const parameters& lti::supervisedInstanceClassifier::getParameters | ( | ) | const |
returns used parameters
Reimplemented from lti::classifier.
Reimplemented in lti::crispDecisionTree, lti::decisionTree, lti::kNNClassifier, lti::lvq, lti::manualCrispDecisionTree, lti::MLP, lti::rbf, lti::shClassifier, and lti::svm.
virtual const char* lti::supervisedInstanceClassifier::getTypeName | ( | ) | const [virtual] |
returns the name of this type ("supervisedInstanceClassifier")
Reimplemented from lti::classifier.
Reimplemented in lti::crispDecisionTree, lti::decisionTree, lti::kNNClassifier, lti::manualCrispDecisionTree, lti::MLP, lti::rbf, lti::shClassifier, and lti::svm.
bool lti::supervisedInstanceClassifier::makeOutputTemplate | ( | const int & | outSize, | |
const dmatrix & | data, | |||
const ivector & | ids | |||
) | [protected] |
Sets the outputTemplate probability distributions according to the classification of the given data.
The distributions are built by the follwing rule:
This results in a distribution over the ids that caused highest probability for each position of the output.
outSize | size of the outputTemplate | |
data | train of validation data | |
ids | ids of the data-vectors |
supervisedInstanceClassifier& lti::supervisedInstanceClassifier::operator= | ( | const supervisedInstanceClassifier & | other | ) | [inline] |
Alias for "copy".
other | the functor to be copied |
Reimplemented from lti::classifier.
Reimplemented in lti::crispDecisionTree, lti::decisionTree, lti::kNNClassifier, lti::lvq, lti::manualCrispDecisionTree, lti::MLP, lti::rbf, lti::shClassifier, and lti::svm.
References copy().
virtual bool lti::supervisedInstanceClassifier::train | ( | const dmatrix & | input, | |
const ivector & | ids | |||
) | [pure virtual] |
Supervised training.
The vectors in the input
matrix must be trained using as "known" classes the values given in ids
.
input | the matrix with input vectors (each row is a training vector) | |
ids | the output classes ids for the input vectors. |
Implemented in lti::kNNClassifier, lti::lvq, lti::manualCrispDecisionTree, lti::MLP, lti::rbf, lti::shClassifier, and lti::svm.