|
latest version v1.9 - last update 10 Apr 2010 |
|
Abstract class, parent of all supervised instance classifiers. More...
#include <ltiSupervisedInstanceClassifier.h>


Public Member Functions | |
| supervisedInstanceClassifier () | |
| supervisedInstanceClassifier (const supervisedInstanceClassifier &other) | |
| virtual const char * | getTypeName () const |
| supervisedInstanceClassifier & | copy (const supervisedInstanceClassifier &other) |
| supervisedInstanceClassifier & | operator= (const supervisedInstanceClassifier &other) |
| const parameters & | getParameters () const |
| virtual bool | train (const dmatrix &input, const ivector &ids)=0 |
| virtual bool | classify (const dvector &feature, outputVector &result) const =0 |
Protected Member Functions | |
| bool | makeOutputTemplate (const int &outSize, const dmatrix &data, const ivector &ids) |
Abstract class, parent of all supervised instance classifiers.
This class defines the interface for all supervised train methods which are not dependant on time.
| lti::supervisedInstanceClassifier::supervisedInstanceClassifier | ( | ) |
default constructor
| lti::supervisedInstanceClassifier::supervisedInstanceClassifier | ( | const supervisedInstanceClassifier & | other | ) |
copy constructor
| other | the object to be copied |
| virtual bool lti::supervisedInstanceClassifier::classify | ( | const dvector & | feature, | |
| outputVector & | result | |||
| ) | const [pure virtual] |
Classification.
Classifies the feature and returns the outputVector with the classification result.
| feature | the vector to be classified | |
| result | the result of the classification |
Implemented in lti::crispDecisionTree, lti::kNNClassifier, lti::lvq, lti::MLP, lti::rbf, lti::shClassifier, and lti::svm.
| supervisedInstanceClassifier& lti::supervisedInstanceClassifier::copy | ( | const supervisedInstanceClassifier & | other | ) |
copy data of "other" functor.
| other | the functor to be copied |
Reimplemented from lti::classifier.
Reimplemented in lti::crispDecisionTree, lti::decisionTree, lti::kNNClassifier, lti::lvq, lti::manualCrispDecisionTree, lti::MLP, lti::rbf, lti::shClassifier, and lti::svm.
Referenced by operator=().
| const parameters& lti::supervisedInstanceClassifier::getParameters | ( | ) | const |
returns used parameters
Reimplemented from lti::classifier.
Reimplemented in lti::crispDecisionTree, lti::decisionTree, lti::kNNClassifier, lti::lvq, lti::manualCrispDecisionTree, lti::MLP, lti::rbf, lti::shClassifier, and lti::svm.
| virtual const char* lti::supervisedInstanceClassifier::getTypeName | ( | ) | const [virtual] |
returns the name of this type ("supervisedInstanceClassifier")
Reimplemented from lti::classifier.
Reimplemented in lti::crispDecisionTree, lti::decisionTree, lti::kNNClassifier, lti::manualCrispDecisionTree, lti::MLP, lti::rbf, lti::shClassifier, and lti::svm.
| bool lti::supervisedInstanceClassifier::makeOutputTemplate | ( | const int & | outSize, | |
| const dmatrix & | data, | |||
| const ivector & | ids | |||
| ) | [protected] |
Sets the outputTemplate probability distributions according to the classification of the given data.
The distributions are built by the follwing rule:
This results in a distribution over the ids that caused highest probability for each position of the output.
| outSize | size of the outputTemplate | |
| data | train of validation data | |
| ids | ids of the data-vectors |
| supervisedInstanceClassifier& lti::supervisedInstanceClassifier::operator= | ( | const supervisedInstanceClassifier & | other | ) | [inline] |
Alias for "copy".
| other | the functor to be copied |
Reimplemented from lti::classifier.
Reimplemented in lti::crispDecisionTree, lti::decisionTree, lti::kNNClassifier, lti::lvq, lti::manualCrispDecisionTree, lti::MLP, lti::rbf, lti::shClassifier, and lti::svm.
References copy().
| virtual bool lti::supervisedInstanceClassifier::train | ( | const dmatrix & | input, | |
| const ivector & | ids | |||
| ) | [pure virtual] |
Supervised training.
The vectors in the input matrix must be trained using as "known" classes the values given in ids.
| input | the matrix with input vectors (each row is a training vector) | |
| ids | the output classes ids for the input vectors. |
Implemented in lti::kNNClassifier, lti::lvq, lti::manualCrispDecisionTree, lti::MLP, lti::rbf, lti::shClassifier, and lti::svm.