LTI-Lib latest version v1.9 - last update 10 Apr 2010

lti::clustering Class Reference

Base class for all clustering algorithms. More...

#include <ltiClustering.h>

Inheritance diagram for lti::clustering:
Inheritance graph
[legend]
Collaboration diagram for lti::clustering:
Collaboration graph
[legend]

List of all members.

Classes

class  parameters
 parameters for clustering functors. More...

Public Member Functions

 clustering ()
 clustering (const clustering &other)
virtual ~clustering ()
virtual const char * getTypeName () const
clusteringcopy (const clustering &other)
const parametersgetParameters () const
virtual bool train (const dmatrix &input)=0
virtual bool train (const dmatrix &input, ivector &ids)

Detailed Description

Base class for all clustering algorithms.

Clustering algorithms can follow different training strategies as indicated by the parameter clusterMode. Representations of the clusters are modelled in subclasses of this class, e.g. centroidClustering.


Constructor & Destructor Documentation

lti::clustering::clustering (  ) 

default constructor

lti::clustering::clustering ( const clustering other  ) 

copy constructor

Parameters:
other the object to be copied
virtual lti::clustering::~clustering (  )  [virtual]

destructor


Member Function Documentation

clustering& lti::clustering::copy ( const clustering other  ) 

copy data of "other" functor.

Parameters:
other the functor to be copied
Returns:
a reference to this functor object

Reimplemented from lti::unsupervisedClassifier.

Reimplemented in lti::adaptiveKMeans, lti::centroidClustering, lti::competitiveAgglomeration, lti::DBScan< T >, lti::fuzzyCMeans, lti::kMeansClustering, and lti::MSTClustering< U >.

const parameters& lti::clustering::getParameters (  )  const
virtual const char* lti::clustering::getTypeName (  )  const [virtual]
virtual bool lti::clustering::train ( const dmatrix input,
ivector ids 
) [virtual]

train the clusterer with the vectors at the rows of input, and return the cluster id for each of that vectors.

Parameters:
input the input data
ids output vector where the cluster id per input vector will be stored.
Returns:
true if successful, false otherwise.

Reimplemented from lti::unsupervisedClassifier.

Reimplemented in lti::adaptiveKMeans, lti::centroidClustering, lti::competitiveAgglomeration, lti::DBScan< T >, lti::fuzzyCMeans, lti::kMeansClustering, and lti::MSTClustering< U >.

virtual bool lti::clustering::train ( const dmatrix input  )  [pure virtual]

train the clusterer with the vectors at the rows of input

Parameters:
input the input data
Returns:
true if successful, false otherwise.

Implements lti::unsupervisedClassifier.

Implemented in lti::adaptiveKMeans, lti::centroidClustering, lti::competitiveAgglomeration, lti::DBScan< T >, lti::fuzzyCMeans, lti::kMeansClustering, and lti::MSTClustering< U >.


The documentation for this class was generated from the following file:

Generated on Sat Apr 10 15:26:47 2010 for LTI-Lib by Doxygen 1.6.1