latest version v1.9 - last update 10 Apr 2010 |
Base class for all clustering algorithms. More...
#include <ltiClustering.h>
Classes | |
class | parameters |
parameters for clustering functors. More... | |
Public Member Functions | |
clustering () | |
clustering (const clustering &other) | |
virtual | ~clustering () |
virtual const char * | getTypeName () const |
clustering & | copy (const clustering &other) |
const parameters & | getParameters () const |
virtual bool | train (const dmatrix &input)=0 |
virtual bool | train (const dmatrix &input, ivector &ids) |
Base class for all clustering algorithms.
Clustering algorithms can follow different training strategies as indicated by the parameter clusterMode. Representations of the clusters are modelled in subclasses of this class, e.g. centroidClustering.
lti::clustering::clustering | ( | ) |
default constructor
lti::clustering::clustering | ( | const clustering & | other | ) |
copy constructor
other | the object to be copied |
virtual lti::clustering::~clustering | ( | ) | [virtual] |
destructor
clustering& lti::clustering::copy | ( | const clustering & | other | ) |
copy data of "other" functor.
other | the functor to be copied |
Reimplemented from lti::unsupervisedClassifier.
Reimplemented in lti::adaptiveKMeans, lti::centroidClustering, lti::competitiveAgglomeration, lti::DBScan< T >, lti::fuzzyCMeans, lti::kMeansClustering, and lti::MSTClustering< U >.
const parameters& lti::clustering::getParameters | ( | ) | const |
returns current parameters.
Reimplemented from lti::unsupervisedClassifier.
Reimplemented in lti::adaptiveKMeans, lti::centroidClustering, lti::competitiveAgglomeration, lti::DBScan< T >, lti::fuzzyCMeans, lti::kMeansClustering, and lti::MSTClustering< U >.
virtual const char* lti::clustering::getTypeName | ( | ) | const [virtual] |
returns the name of this type ("clustering")
Reimplemented from lti::unsupervisedClassifier.
Reimplemented in lti::adaptiveKMeans, lti::centroidClustering, lti::competitiveAgglomeration, lti::DBScan< T >, lti::fuzzyCMeans, lti::kMeansClustering, and lti::MSTClustering< U >.
train the clusterer with the vectors at the rows of input, and return the cluster id for each of that vectors.
input | the input data | |
ids | output vector where the cluster id per input vector will be stored. |
Reimplemented from lti::unsupervisedClassifier.
Reimplemented in lti::adaptiveKMeans, lti::centroidClustering, lti::competitiveAgglomeration, lti::DBScan< T >, lti::fuzzyCMeans, lti::kMeansClustering, and lti::MSTClustering< U >.
virtual bool lti::clustering::train | ( | const dmatrix & | input | ) | [pure virtual] |
train the clusterer with the vectors at the rows of input
input | the input data |
Implements lti::unsupervisedClassifier.
Implemented in lti::adaptiveKMeans, lti::centroidClustering, lti::competitiveAgglomeration, lti::DBScan< T >, lti::fuzzyCMeans, lti::kMeansClustering, and lti::MSTClustering< U >.