LTI-Lib latest version v1.9 - last update 10 Apr 2010

lti::clustering::parameters Class Reference

parameters for clustering functors. More...

#include <ltiClustering.h>

Inheritance diagram for lti::clustering::parameters:
Inheritance graph
[legend]
Collaboration diagram for lti::clustering::parameters:
Collaboration graph
[legend]

List of all members.

Public Types

enum  eClusterMode

Public Member Functions

 parameters ()
 parameters (const parameters &other)
virtual ~parameters ()
const char * getTypeName () const
parameterscopy (const parameters &other)
virtual classifier::parametersclone () const
virtual bool write (ioHandler &handler, const bool complete=true) const
virtual bool read (ioHandler &handler, const bool complete=true)

Public Attributes

eClusterMode clusterMode

Detailed Description

parameters for clustering functors.

Provides a clusterMode which is of type eClusterMode


Member Enumeration Documentation

Different methods for clustering data using basically the same algorithm.

Not all clusterModes must be available for all clustering algorithms. See individual documentation. The different modes have the following meaning:

batch
All data points must be available. Clusters are only updated after all available data has been considered.
sequential
Really sequential batch. Again all data must be available but clusters are updated after consideration of each data point. The update requires the knowledge of all other or previously considered data points.
online
Consideres the current data point only. Usually involves some learning rate etc.
miniBatch
A mix of sequential/online and batch. Build small batch blocks and do batch processing with them. Usually used instead of online to lessen effect of noise.

Constructor & Destructor Documentation

lti::clustering::parameters::parameters (  ) 
lti::clustering::parameters::parameters ( const parameters other  ) 

copy constructor

Parameters:
other the parameters object to be copied

Reimplemented from lti::unsupervisedClassifier::parameters.

Reimplemented in lti::DBScan< T >::parameters, and lti::MSTClustering< U >::parameters.

virtual lti::clustering::parameters::~parameters (  )  [virtual]

Member Function Documentation

virtual classifier::parameters* lti::clustering::parameters::clone (  )  const [virtual]

returns a pointer to a clone of the parameters

Reimplemented from lti::classifier::parameters.

Reimplemented in lti::DBScan< T >::parameters, and lti::MSTClustering< U >::parameters.

parameters& lti::clustering::parameters::copy ( const parameters other  ) 

copy the contents of a parameters object

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

Reimplemented from lti::unsupervisedClassifier::parameters.

Reimplemented in lti::DBScan< T >::parameters, and lti::MSTClustering< U >::parameters.

Referenced by lti::MSTClustering< U >::parameters::copy(), and lti::DBScan< T >::parameters::copy().

const char* lti::clustering::parameters::getTypeName (  )  const [virtual]

returns name of this type

Reimplemented from lti::unsupervisedClassifier::parameters.

Reimplemented in lti::DBScan< T >::parameters, and lti::MSTClustering< U >::parameters.

virtual bool lti::clustering::parameters::read ( ioHandler handler,
const bool  complete = true 
) [virtual]

read the parameters from the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::classifier::parameters.

Reimplemented in lti::DBScan< T >::parameters, and lti::MSTClustering< U >::parameters.

virtual bool lti::clustering::parameters::write ( ioHandler handler,
const bool  complete = true 
) const [virtual]

write the parameters in the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::classifier::parameters.

Reimplemented in lti::DBScan< T >::parameters, and lti::MSTClustering< U >::parameters.


Member Data Documentation

Kind of mode used for clustering.

(Default batch)


The documentation for this class was generated from the following file:

Generated on Sat Apr 10 15:26:47 2010 for LTI-Lib by Doxygen 1.6.1