latest version v1.9 - last update 10 Apr 2010 |
00001 /* 00002 * Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006 00003 * Lehrstuhl fuer Technische Informatik, RWTH-Aachen, Germany 00004 * 00005 * This file is part of the LTI-Computer Vision Library (LTI-Lib) 00006 * 00007 * The LTI-Lib is free software; you can redistribute it and/or 00008 * modify it under the terms of the GNU Lesser General Public License (LGPL) 00009 * as published by the Free Software Foundation; either version 2.1 of 00010 * the License, or (at your option) any later version. 00011 * 00012 * The LTI-Lib is distributed in the hope that it will be 00013 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 00014 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 * GNU Lesser General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU Lesser General Public 00018 * License along with the LTI-Lib; see the file LICENSE. If 00019 * not, write to the Free Software Foundation, Inc., 59 Temple Place - 00020 * Suite 330, Boston, MA 02111-1307, USA. 00021 */ 00022 00023 00024 /*---------------------------------------------------------------- 00025 * project ....: LTI Digital Image/Signal Processing Library 00026 * file .......: ltiClustering.h 00027 * authors ....: Peter Doerfler 00028 * organization: LTI, RWTH Aachen 00029 * creation ...: 29.08.2001 00030 * revisions ..: $Id: ltiClustering.h,v 1.6 2006/02/07 18:14:11 ltilib Exp $ 00031 */ 00032 00033 #include "ltiObject.h" 00034 #include "ltiUnsupervisedClassifier.h" 00035 00036 00037 #ifndef _LTI_CLUSTERING_H_ 00038 #define _LTI_CLUSTERING_H_ 00039 00040 namespace lti { 00041 00042 /** 00043 * Base class for all clustering algorithms. Clustering algorithms 00044 * can follow different training strategies as indicated by the 00045 * parameter clusterMode. Representations of the clusters are 00046 * modelled in subclasses of this class, e.g. centroidClustering. 00047 */ 00048 class clustering : public unsupervisedClassifier { 00049 00050 public: 00051 00052 /** 00053 * parameters for clustering functors. 00054 * Provides a clusterMode which is of type eClusterMode 00055 */ 00056 class parameters : public unsupervisedClassifier::parameters { 00057 00058 public: 00059 /** 00060 * default constructor 00061 */ 00062 parameters(); 00063 00064 /** 00065 * copy constructor 00066 * @param other the parameters %object to be copied 00067 */ 00068 parameters(const parameters& other); 00069 00070 /** 00071 * destructor 00072 */ 00073 virtual ~parameters(); 00074 00075 /** 00076 * returns name of this type 00077 */ 00078 const char* getTypeName() const; 00079 00080 /** 00081 * copy the contents of a parameters %object 00082 * @param other the parameters %object to be copied 00083 * @return a reference to this parameters %object 00084 */ 00085 parameters& copy(const parameters& other); 00086 00087 /** 00088 * returns a pointer to a clone of the parameters 00089 */ 00090 virtual classifier::parameters* clone() const; 00091 00092 /** 00093 * write the parameters in the given ioHandler 00094 * @param handler the ioHandler to be used 00095 * @param complete if true (the default) the enclosing begin/end will 00096 * be also written, otherwise only the data block will be written. 00097 * @return true if write was successful 00098 */ 00099 virtual bool write(ioHandler& handler,const bool complete=true) const; 00100 00101 /** 00102 * read the parameters from the given ioHandler 00103 * @param handler the ioHandler to be used 00104 * @param complete if true (the default) the enclosing begin/end will 00105 * be also written, otherwise only the data block will be written. 00106 * @return true if write was successful 00107 */ 00108 virtual bool read(ioHandler& handler,const bool complete=true); 00109 00110 # ifdef _LTI_MSC_6 00111 /** 00112 * this function is required by MSVC only, as a workaround for a 00113 * very awful bug, which exists since MSVC V.4.0, and still by 00114 * V.6.0 with all bugfixes (so called "service packs") remains 00115 * there... This method is also public due to another bug, so please 00116 * NEVER EVER call this method directly: use read() instead 00117 */ 00118 bool readMS(ioHandler& handler,const bool complete=true); 00119 00120 /** 00121 * this function is required by MSVC only, as a workaround for a 00122 * very awful bug, which exists since MSVC V.4.0, and still by 00123 * V.6.0 with all bugfixes (so called "service packs") remains 00124 * there... This method is also public due to another bug, so please 00125 * NEVER EVER call this method directly: use write() instead 00126 */ 00127 bool writeMS(ioHandler& handler,const bool complete=true) const; 00128 # endif 00129 00130 // ------------------------------------------------ 00131 // the parameters 00132 // ------------------------------------------------ 00133 00134 /** 00135 * Different methods for clustering data using basically the 00136 * same algorithm. Not all clusterModes must be available for 00137 * all clustering algorithms. See individual documentation. The 00138 * different modes have the following meaning: <p> 00139 * <dl> 00140 * <dt>batch</dt> 00141 * <dd>All data points must be available. Clusters are only updated 00142 * after all available data has been considered.</dd> 00143 * <dt>sequential</dt> 00144 * <dd>Really sequential batch. Again all data must be available 00145 * but clusters are updated after consideration of each data 00146 * point. The update requires the knowledge of all other or 00147 * previously considered data points.</dd> 00148 * <dt>online</dt> 00149 * <dd>Consideres the current data point only. Usually involves 00150 * some learning rate etc.</dd> 00151 * <dt>miniBatch</dt> 00152 * <dd>A mix of sequential/online and batch. Build small batch blocks 00153 * and do batch processing with them. Usually used instead of 00154 * online to lessen effect of noise.</dd> 00155 * </dl> 00156 */ 00157 enum eClusterMode { 00158 batch, 00159 sequential, 00160 online, 00161 miniBatch 00162 }; 00163 00164 /** 00165 * Kind of mode used for clustering. (Default batch) 00166 */ 00167 eClusterMode clusterMode; 00168 00169 }; 00170 00171 /** 00172 * default constructor 00173 */ 00174 clustering(); 00175 00176 /** 00177 * copy constructor 00178 * @param other the %object to be copied 00179 */ 00180 clustering(const clustering& other); 00181 00182 /** 00183 * destructor 00184 */ 00185 virtual ~clustering(); 00186 00187 /** 00188 * returns the name of this type ("clustering") 00189 */ 00190 virtual const char* getTypeName() const; 00191 00192 /** 00193 * copy data of "other" functor. 00194 * @param other the functor to be copied 00195 * @return a reference to this functor %object 00196 */ 00197 clustering& copy(const clustering& other); 00198 00199 /** 00200 * returns current parameters. 00201 */ 00202 const parameters& getParameters() const; 00203 00204 /** 00205 * train the clusterer with the vectors at the rows of input 00206 * 00207 * @param input the input data 00208 * @return true if successful, false otherwise. 00209 */ 00210 virtual bool train(const dmatrix& input) =0; 00211 00212 /** 00213 * train the clusterer with the vectors at the rows of input, 00214 * and return the cluster id for each of that vectors. 00215 * 00216 * @param input the input data 00217 * @param ids output vector where the cluster id per input vector will 00218 * be stored. 00219 * @return true if successful, false otherwise. 00220 */ 00221 virtual bool train(const dmatrix& input, 00222 ivector& ids); 00223 00224 00225 }; 00226 00227 } 00228 00229 #endif