LTI-Lib latest version v1.9 - last update 10 Apr 2010

lti::kalmanFilter::parameters Class Reference

The parameters for the class kalmanFilter. More...

#include <ltiKalmanFilter.h>

Inheritance diagram for lti::kalmanFilter::parameters:
Inheritance graph
[legend]
Collaboration diagram for lti::kalmanFilter::parameters:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 parameters ()
 parameters (int systemDimension, int measurementDimension, int controlDimension)
 parameters (const parameters &other)
 ~parameters ()
const char * getTypeName () const
parameterscopy (const parameters &other)
parametersoperator= (const parameters &other)
virtual functor::parametersclone () const
bool consistent () const
virtual bool read (ioHandler &handler, const bool complete=true)
virtual bool write (ioHandler &handler, const bool complete=true) const

Public Attributes

vector< float > initialSystemState
matrix< float > dynamicsMatrix
matrix< float > controlMatrix
matrix< float > measurementMatrix
matrix< float > measurementNoiseCovariance
matrix< float > processNoiseCovariance
matrix< float > initialErrorCovariance

Detailed Description

The parameters for the class kalmanFilter.


Constructor & Destructor Documentation

lti::kalmanFilter::parameters::parameters (  ) 

Default constructor.

All initial values (vectors and matrices) are initialized empty, i.e. they have 0 or 0x0 dimensions.

Reimplemented from lti::functor::parameters.

lti::kalmanFilter::parameters::parameters ( int  systemDimension,
int  measurementDimension,
int  controlDimension 
)

This constructor creates all initial values (vectors and matrices) with matching dimensions, containing only zeros.

lti::kalmanFilter::parameters::parameters ( const parameters other  ) 

copy constructor

Parameters:
other the parameters object to be copied
lti::kalmanFilter::parameters::~parameters (  )  [virtual]

destructor

Reimplemented from lti::functor::parameters.


Member Function Documentation

virtual functor::parameters* lti::kalmanFilter::parameters::clone (  )  const [virtual]

returns a pointer to a clone of the parameters

Implements lti::functor::parameters.

bool lti::kalmanFilter::parameters::consistent (  )  const

Check the consistency of the parameters.

The parameters are consistent if certain dimensions match each other, e.g. the dynamicsMatrix must be square and must have as many rows as the system state. Additional consistency checks are performed for each measurement and control vector.

parameters& lti::kalmanFilter::parameters::copy ( const parameters other  ) 

copy the contents of a parameters object

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object
const char* lti::kalmanFilter::parameters::getTypeName (  )  const [virtual]

returns name of this type

Reimplemented from lti::functor::parameters.

parameters& lti::kalmanFilter::parameters::operator= ( const parameters other  ) 

copy the contents of a parameters object

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object
virtual bool lti::kalmanFilter::parameters::read ( ioHandler handler,
const bool  complete = true 
) [virtual]

write the parameters in the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::functor::parameters.

virtual bool lti::kalmanFilter::parameters::write ( ioHandler handler,
const bool  complete = true 
) const [virtual]

write the parameters in the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::functor::parameters.


Member Data Documentation

matrix that describes influence of control input on system state (rarely used at LTI) (B)

matrix that describes system dynamics (A)

Initial estimate error covariance (P).

This value is used either for $P^{-}$ or $P$, depending on whether the first update is a measurement or a time update (respectively).

Initial system state (x).

This value is used either for $\hat{x}^{-}$ or $\hat{x}$, depending on whether the first update is a measurement or a time update (respectively).

matrix that relates the system state to the (expected) measurement (H)

measurement noise covariance (R)

process noise covariance (Q)


The documentation for this class was generated from the following file:

Generated on Sat Apr 10 15:27:27 2010 for LTI-Lib by Doxygen 1.6.1