latest version v1.9 - last update 10 Apr 2010 |
00001 /* 00002 * Copyright (C) 2004, 2005, 2006 00003 * Lehrstuhl fuer Technische Informatik, RWTH-Aachen, Germany 00004 * 00005 * This file is part of the LTI-Computer Vision Library (LTI-Lib) 00006 * 00007 * The LTI-Lib is free software; you can redistribute it and/or 00008 * modify it under the terms of the GNU Lesser General Public License (LGPL) 00009 * as published by the Free Software Foundation; either version 2.1 of 00010 * the License, or (at your option) any later version. 00011 * 00012 * The LTI-Lib is distributed in the hope that it will be 00013 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 00014 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 * GNU Lesser General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU Lesser General Public 00018 * License along with the LTI-Lib; see the file LICENSE. If 00019 * not, write to the Free Software Foundation, Inc., 59 Temple Place - 00020 * Suite 330, Boston, MA 02111-1307, USA. 00021 */ 00022 00023 00024 /*-------------------------------------------------------------------- 00025 * project ....: LTI-Lib: Image Processing and Computer Vision Library 00026 * file .......: ltiRansacEstimator.h 00027 * authors ....: Claudia Goenner 00028 * organization: LTI, RWTH Aachen 00029 * creation ...: 14.4.2004 00030 * revisions ..: $Id: ltiRansacEstimator.h,v 1.6 2006/02/08 11:43:34 ltilib Exp $ 00031 */ 00032 00033 #ifndef _LTI_RANSAC_ESTIMATOR_H_ 00034 #define _LTI_RANSAC_ESTIMATOR_H_ 00035 00036 #include "ltiMonteCarloEstimator.h" 00037 00038 namespace lti { 00039 00040 /** 00041 * This class estimates a transform using the Ransac algorithm. The 00042 * Ransac algorithm maximizes the number of inliers. At each 00043 * iteration a subset of points/correspondences is drawn from which the 00044 * transform is computed. 00045 * 00046 * Theoretically the Ransac algorithm copes with up to 90% outliers. It is 00047 * advised though, to verify the estimated transform and repeat the 00048 * ransac estimation in case of a bad estimation. For the homography 00049 * estimators this may be performed by the homographyVerfication 00050 * (coming up soon). 00051 * 00052 */ 00053 class ransacEstimator : public monteCarloEstimator { 00054 public: 00055 /** 00056 * The parameters for the class ransacEstimator 00057 */ 00058 class parameters : public monteCarloEstimator::parameters { 00059 public: 00060 /** 00061 * Default constructor 00062 */ 00063 parameters(); 00064 00065 /** 00066 * Copy constructor 00067 * @param other the parameters object to be copied 00068 */ 00069 parameters(const parameters& other); 00070 00071 /** 00072 * Destructor 00073 */ 00074 ~parameters(); 00075 00076 /** 00077 * Returns name of this type 00078 */ 00079 const char* getTypeName() const; 00080 00081 /** 00082 * Copy the contents of a parameters object 00083 * @param other the parameters object to be copied 00084 * @return a reference to this parameters object 00085 */ 00086 parameters& copy(const parameters& other); 00087 00088 /** 00089 * Copy the contents of a parameters object 00090 * @param other the parameters object to be copied 00091 * @return a reference to this parameters object 00092 */ 00093 parameters& operator=(const parameters& other); 00094 00095 00096 /** 00097 * Returns a pointer to a clone of the parameters 00098 */ 00099 virtual functor::parameters* clone() const; 00100 00101 /** 00102 * Write the parameters in the given ioHandler 00103 * @param handler the ioHandler to be used 00104 * @param complete if true (the default) the enclosing begin/end will 00105 * be also written, otherwise only the data block will be written. 00106 * @return true if write was successful 00107 */ 00108 virtual bool write(ioHandler& handler,const bool complete=true) const; 00109 00110 /** 00111 * Read the parameters from the given ioHandler 00112 * @param handler the ioHandler to be used 00113 * @param complete if true (the default) the enclosing begin/end will 00114 * be also written, otherwise only the data block will be written. 00115 * @return true if write was successful 00116 */ 00117 virtual bool read(ioHandler& handler,const bool complete=true); 00118 00119 # ifdef _LTI_MSC_6 00120 /** 00121 * This function is required by MSVC only, as a workaround for a 00122 * very awful bug, which exists since MSVC V.4.0, and still by 00123 * V.6.0 with all bugfixes (so called "service packs") remains 00124 * there... This method is also public due to another bug, so please 00125 * NEVER EVER call this method directly: use read() instead 00126 */ 00127 bool readMS(ioHandler& handler,const bool complete=true); 00128 00129 /** 00130 * This function is required by MSVC only, as a workaround for a 00131 * very awful bug, which exists since MSVC V.4.0, and still by 00132 * V.6.0 with all bugfixes (so called "service packs") remains 00133 * there... This method is also public due to another bug, so please 00134 * NEVER EVER call this method directly: use write() instead 00135 */ 00136 bool writeMS(ioHandler& handler,const bool complete=true) const; 00137 # endif 00138 00139 // ------------------------------------------------ 00140 // the parameters 00141 // ------------------------------------------------ 00142 00143 /** 00144 * Adjust the degree of contamination after each successfull guess. 00145 * The contamination is only decreased and never increased. 00146 * This parameter effects the number of iterations performed. 00147 * The functor will always terminate after at most the maximum iterations 00148 * specified in the parameters, though. 00149 * 00150 * If adaptive contamination is on, the applies return true even if the 00151 * detected inliers suggest a contamination above the parametrized 00152 * contamination. 00153 * 00154 * Default: false. 00155 */ 00156 bool adaptiveContamination; 00157 00158 /** 00159 * The number of correspondences drawn at each trial to estimate the 00160 * transform. Literature advises to use the minimum number 00161 * correspondences that are required which is proved optimal under a 00162 * statistical context. 00163 * 00164 * Default: true. 00165 */ 00166 int numCorrespondencesPerTrial; 00167 00168 /** 00169 * If true the algorithm stops as soon as a transformation is found, 00170 * whose number of outliers is below the expected contamination. The 00171 * expected contamination is supplied as a parameter and not changed 00172 * adaptively. 00173 * 00174 * Default: true. 00175 */ 00176 bool checkStop; 00177 00178 /** 00179 * The expected degree of contamination. 00180 * 00181 * Default: .5 00182 */ 00183 float contamination; 00184 00185 /** 00186 * The number of trials in adaptive mode depends on the estimated 00187 * contamination and the confidence, under which the result is correct. 00188 * 00189 * Default: .99 00190 */ 00191 float confidence; 00192 00193 /** 00194 * If true the minimum required number of points/correspondences is 00195 * used no matter which value numCorrespondencesPerTrial has. 00196 * 00197 * Default: true. 00198 */ 00199 bool useMinCorrespondences; 00200 00201 }; 00202 00203 /** 00204 * Default constructor 00205 */ 00206 ransacEstimator(); 00207 00208 /** 00209 * Construct a functor using the given parameters 00210 */ 00211 ransacEstimator(const parameters& par); 00212 00213 /** 00214 * Copy constructor 00215 * @param other the object to be copied 00216 */ 00217 ransacEstimator(const ransacEstimator& other); 00218 00219 /** 00220 * Destructor 00221 */ 00222 virtual ~ransacEstimator(); 00223 00224 /** 00225 * Returns the name of this type ("ransacEstimator") 00226 */ 00227 virtual const char* getTypeName() const; 00228 00229 /** 00230 * Estimates a transform from the supplied point sets. 00231 * 00232 * All points of one point set give a matrix row, whereas all elements 00233 * of a specifec correspondence stand in a matrix column. 00234 * 00235 * @param src std::vector<vector<dpoint> > with the point sets. 00236 * @param dest fvector the estimated transform. 00237 * @return true if apply successful or false otherwise. 00238 */ 00239 virtual bool apply(const matrix<fpoint>& src, 00240 fvector& dest) const; 00241 00242 /** 00243 * Estimates a transform from the supplied point sets. 00244 * 00245 * All points of one point set give a matrix row, whereas all elements 00246 * of a specifec correspondence stand in a matrix column. 00247 * 00248 * @param src std::vector<vector<dpoint> > with the point sets. 00249 * @param dest fvector the estimated transform. 00250 * @param error fvector containing the deviation of each point from the 00251 * estimated transform. Usually this is the residual, also a 00252 * if a squared residual is computed inside the transform 00253 * estimator. 00254 * @return true if apply successful or false otherwise. 00255 */ 00256 virtual bool apply(const matrix<fpoint>& src, 00257 fvector& dest, fvector& error) const; 00258 00259 /** 00260 * Estimates a transform from the supplied point sets. 00261 * 00262 * All points of one point set give a matrix row, whereas all elements 00263 * of a specifec correspondence stand in a matrix column. 00264 * 00265 * @param src std::vector<vector<dpoint> > with the point sets. 00266 * @param dest dvector the estimated transform. 00267 * @return true if apply successful or false otherwise. 00268 */ 00269 virtual bool apply(const matrix<dpoint>& src, 00270 dvector& dest) const; 00271 00272 /** 00273 * Estimates a transform from the supplied point sets. 00274 * 00275 * All points of one point set give a matrix row, whereas all elements 00276 * of a specifec correspondence stand in a matrix column. 00277 * 00278 * @param src std::vector<vector<dpoint> > with the point sets. 00279 * @param dest dvector the estimated transform. 00280 * @param error fvector containing the deviation of each point from the 00281 * estimated transform. Usually this is the residual, also a 00282 * if a squared residual is computed inside the transform 00283 * estimator. 00284 * @return true if apply successful or false otherwise. 00285 */ 00286 virtual bool apply(const matrix<dpoint>& src, 00287 dvector& dest, dvector& error) const; 00288 00289 /** 00290 * Copy data of "other" functor. 00291 * @param other the functor to be copied 00292 * @return a reference to this functor object 00293 */ 00294 ransacEstimator& copy(const ransacEstimator& other); 00295 00296 /** 00297 * Alias for copy member 00298 * @param other the functor to be copied 00299 * @return a reference to this functor object 00300 */ 00301 ransacEstimator& operator=(const ransacEstimator& other); 00302 00303 /** 00304 * Returns a pointer to a clone of this functor. 00305 */ 00306 virtual functor* clone() const; 00307 00308 /** 00309 * Returns used parameters 00310 */ 00311 const parameters& getParameters() const; 00312 00313 }; 00314 } 00315 00316 #endif