LTI-Lib latest version v1.9 - last update 10 Apr 2010

lti::ransacEstimator::parameters Class Reference

The parameters for the class ransacEstimator. More...

#include <ltiRansacEstimator.h>

Inheritance diagram for lti::ransacEstimator::parameters:
Inheritance graph
[legend]
Collaboration diagram for lti::ransacEstimator::parameters:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 parameters ()
 parameters (const parameters &other)
 ~parameters ()
const char * getTypeName () const
parameterscopy (const parameters &other)
parametersoperator= (const parameters &other)
virtual functor::parametersclone () const
virtual bool write (ioHandler &handler, const bool complete=true) const
virtual bool read (ioHandler &handler, const bool complete=true)

Public Attributes

bool adaptiveContamination
int numCorrespondencesPerTrial
bool checkStop
float contamination
float confidence
bool useMinCorrespondences

Detailed Description

The parameters for the class ransacEstimator.


Constructor & Destructor Documentation

lti::ransacEstimator::parameters::parameters (  ) 

Default constructor.

Reimplemented from lti::monteCarloEstimator::parameters.

lti::ransacEstimator::parameters::parameters ( const parameters other  ) 

Copy constructor.

Parameters:
other the parameters object to be copied

Reimplemented from lti::monteCarloEstimator::parameters.

lti::ransacEstimator::parameters::~parameters (  )  [virtual]

Destructor.

Reimplemented from lti::monteCarloEstimator::parameters.


Member Function Documentation

virtual functor::parameters* lti::ransacEstimator::parameters::clone (  )  const [virtual]

Returns a pointer to a clone of the parameters.

Reimplemented from lti::monteCarloEstimator::parameters.

parameters& lti::ransacEstimator::parameters::copy ( const parameters other  ) 

Copy the contents of a parameters object.

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

Reimplemented from lti::monteCarloEstimator::parameters.

const char* lti::ransacEstimator::parameters::getTypeName (  )  const [virtual]

Returns name of this type.

Reimplemented from lti::monteCarloEstimator::parameters.

parameters& lti::ransacEstimator::parameters::operator= ( const parameters other  ) 

Copy the contents of a parameters object.

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

Reimplemented from lti::monteCarloEstimator::parameters.

virtual bool lti::ransacEstimator::parameters::read ( ioHandler handler,
const bool  complete = true 
) [virtual]

Read the parameters from the given ioHandler.

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::monteCarloEstimator::parameters.

virtual bool lti::ransacEstimator::parameters::write ( ioHandler handler,
const bool  complete = true 
) const [virtual]

Write the parameters in the given ioHandler.

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::monteCarloEstimator::parameters.


Member Data Documentation

Adjust the degree of contamination after each successfull guess.

The contamination is only decreased and never increased. This parameter effects the number of iterations performed. The functor will always terminate after at most the maximum iterations specified in the parameters, though.

If adaptive contamination is on, the applies return true even if the detected inliers suggest a contamination above the parametrized contamination.

Default: false.

If true the algorithm stops as soon as a transformation is found, whose number of outliers is below the expected contamination.

The expected contamination is supplied as a parameter and not changed adaptively.

Default: true.

The number of trials in adaptive mode depends on the estimated contamination and the confidence, under which the result is correct.

Default: .99

The expected degree of contamination.

Default: .5

The number of correspondences drawn at each trial to estimate the transform.

Literature advises to use the minimum number correspondences that are required which is proved optimal under a statistical context.

Default: true.

If true the minimum required number of points/correspondences is used no matter which value numCorrespondencesPerTrial has.

Default: true.


The documentation for this class was generated from the following file:

Generated on Sat Apr 10 15:27:45 2010 for LTI-Lib by Doxygen 1.6.1