![]() |
latest version v1.9 - last update 10 Apr 2010 |
![]() |
00001 /* 00002 * Copyright (C) 2002, 2003, 2004, 2005, 2006 00003 * Lehrstuhl fuer Technische Informatik, RWTH-Aachen, Germany 00004 * 00005 * This file is part of the LTI-Computer Vision Library (LTI-Lib) 00006 * 00007 * The LTI-Lib is free software; you can redistribute it and/or 00008 * modify it under the terms of the GNU Lesser General Public License (LGPL) 00009 * as published by the Free Software Foundation; either version 2.1 of 00010 * the License, or (at your option) any later version. 00011 * 00012 * The LTI-Lib is distributed in the hope that it will be 00013 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 00014 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 * GNU Lesser General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU Lesser General Public 00018 * License along with the LTI-Lib; see the file LICENSE. If 00019 * not, write to the Free Software Foundation, Inc., 59 Temple Place - 00020 * Suite 330, Boston, MA 02111-1307, USA. 00021 */ 00022 00023 00024 /*-------------------------------------------------------------------- 00025 * project ....: LTI-Lib: Image Processing and Computer Vision Library 00026 * file .......: ltiCrossValidator.h 00027 * authors ....: Jens Paustenbach 00028 * organization: LTI, RWTH Aachen 00029 * creation ...: 25.6.2002 00030 * revisions ..: $Id: ltiCrossValidator.h,v 1.7 2006/02/07 18:16:16 ltilib Exp $ 00031 */ 00032 00033 #ifndef _LTI_CROSS_VALIDATOR_H_ 00034 #define _LTI_CROSS_VALIDATOR_H_ 00035 00036 //TODO: include only those files which are needed in this header!! 00037 00038 #include "ltiVector.h" 00039 #include "ltiMatrix.h" 00040 #include "ltiSupervisedInstanceClassifier.h" 00041 #include "ltiUniformDist.h" 00042 00043 #include "ltiFunctor.h" 00044 00045 namespace lti { 00046 /** 00047 * This class does a cross validation on the given dataset and returns 00048 * the average recognition rates. 00049 * It divides the data at random in nbOfSplits distinct segments. Then the 00050 * network is trained with nbOfSplits-1 of the segments. Then each data 00051 * point of the remaining segment is classified. 00052 * This process is repeated for every possible choice of the 00053 * the segment which is omited from the classification process. 00054 * The classifier that is used for validation is expected to delete old 00055 * results from previous trainings, because the classifier is trained with 00056 * different training data set during validation. 00057 */ 00058 class crossValidator : public functor { 00059 public: 00060 /** 00061 * the parameters for the class crossValidator 00062 */ 00063 class parameters : public functor::parameters { 00064 public: 00065 /** 00066 * default constructor 00067 */ 00068 parameters(); 00069 00070 /** 00071 * copy constructor 00072 * @param other the parameters object to be copied 00073 */ 00074 parameters(const parameters& other); 00075 00076 /** 00077 * destructor 00078 */ 00079 ~parameters(); 00080 00081 /** 00082 * returns name of this type 00083 */ 00084 const char* getTypeName() const; 00085 00086 /** 00087 * copy the contents of a parameters object 00088 * @param other the parameters object to be copied 00089 * @return a reference to this parameters object 00090 */ 00091 parameters& copy(const parameters& other); 00092 00093 /** 00094 * copy the contents of a parameters object 00095 * @param other the parameters object to be copied 00096 * @return a reference to this parameters object 00097 */ 00098 parameters& operator=(const parameters& other); 00099 00100 /** 00101 * returns a pointer to a clone of the parameters 00102 */ 00103 virtual functor::parameters* clone() const; 00104 00105 /** 00106 * write the parameters in the given ioHandler 00107 * @param handler the ioHandler to be used 00108 * @param complete if true (the default) the enclosing begin/end will 00109 * be also written, otherwise only the data block will be written. 00110 * @return true if write was successful 00111 */ 00112 virtual bool write(ioHandler& handler,const bool complete=true) const; 00113 00114 /** 00115 * read the parameters from the given ioHandler 00116 * @param handler the ioHandler to be used 00117 * @param complete if true (the default) the enclosing begin/end will 00118 * be also written, otherwise only the data block will be written. 00119 * @return true if write was successful 00120 */ 00121 virtual bool read(ioHandler& handler,const bool complete=true); 00122 00123 # ifdef _LTI_MSC_6 00124 /** 00125 * this function is required by MSVC only, as a workaround for a 00126 * very awful bug, which exists since MSVC V.4.0, and still by 00127 * V.6.0 with all bugfixes (so called "service packs") remains 00128 * there... This method is also public due to another bug, so please 00129 * NEVER EVER call this method directly: use read() instead 00130 */ 00131 bool readMS(ioHandler& handler,const bool complete=true); 00132 00133 /** 00134 * this function is required by MSVC only, as a workaround for a 00135 * very awful bug, which exists since MSVC V.4.0, and still by 00136 * V.6.0 with all bugfixes (so called "service packs") remains 00137 * there... This method is also public due to another bug, so please 00138 * NEVER EVER call this method directly: use write() instead 00139 */ 00140 bool writeMS(ioHandler& handler,const bool complete=true) const; 00141 # endif 00142 00143 // ------------------------------------------------ 00144 // the parameters 00145 // ------------------------------------------------ 00146 00147 /** 00148 * the data set is divided in this number of splits 00149 */ 00150 int nbOfSplits; 00151 00152 /** 00153 * the classifier that is used for training and classifing 00154 */ 00155 supervisedInstanceClassifier* classify; 00156 00157 }; 00158 00159 /** 00160 * default constructor 00161 */ 00162 crossValidator(); 00163 00164 /** 00165 * copy constructor 00166 * @param other the object to be copied 00167 */ 00168 crossValidator(const crossValidator& other); 00169 00170 /** 00171 * destructor 00172 */ 00173 virtual ~crossValidator(); 00174 00175 /** 00176 * returns the name of this type ("crossValidator") 00177 */ 00178 virtual const char* getTypeName() const; 00179 00180 /** 00181 * Computes the average the average recognition rate of the given data 00182 * using the specified classifier. 00183 * @param data dmatrix with the source data. 00184 * @param ids ivector with the ids of each data point in data. 00185 * @return the average recogntion rate 00186 */ 00187 double apply(const dmatrix& data, const ivector& ids) const; 00188 00189 /** 00190 * Computes the average the average recognition rate of the given data 00191 * using the specified classifier. 00192 * @param data dmatrix with the source data. 00193 * @param ids ivector with the ids of each data point in data. 00194 * @param avRecogRate the average recognition rate 00195 * @return true if apply successful or false otherwise. 00196 */ 00197 bool apply(const dmatrix& data, const ivector& ids, 00198 double& avRecogRate) const; 00199 00200 /** 00201 * copy data of "other" functor. 00202 * @param other the functor to be copied 00203 * @return a reference to this functor object 00204 */ 00205 crossValidator& copy(const crossValidator& other); 00206 00207 /** 00208 * alias for copy member 00209 * @param other the functor to be copied 00210 * @return a reference to this functor object 00211 */ 00212 crossValidator& operator=(const crossValidator& other); 00213 00214 /** 00215 * returns a pointer to a clone of this functor. 00216 */ 00217 virtual functor* clone() const; 00218 00219 /** 00220 * returns used parameters 00221 */ 00222 const parameters& getParameters() const; 00223 00224 protected: 00225 00226 /** 00227 * Splits the given data into parts. The points are randomly drawn from 00228 * the the src data. 00229 */ 00230 bool splitData(const dmatrix& data,std::list<ivector>& splittedData) const; 00231 00232 static uniformDistribution randomGenerator; 00233 00234 }; 00235 } 00236 00237 #endif