LTI-Lib latest version v1.9 - last update 10 Apr 2010

ltiCentroidClustering.h

00001 /*
00002  * Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
00003  * Lehrstuhl fuer Technische Informatik, RWTH-Aachen, Germany
00004  *
00005  * This file is part of the LTI-Computer Vision Library (LTI-Lib)
00006  *
00007  * The LTI-Lib is free software; you can redistribute it and/or
00008  * modify it under the terms of the GNU Lesser General Public License (LGPL)
00009  * as published by the Free Software Foundation; either version 2.1 of
00010  * the License, or (at your option) any later version.
00011  *
00012  * The LTI-Lib is distributed in the hope that it will be
00013  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
00014  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU Lesser General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU Lesser General Public
00018  * License along with the LTI-Lib; see the file LICENSE.  If
00019  * not, write to the Free Software Foundation, Inc., 59 Temple Place -
00020  * Suite 330, Boston, MA 02111-1307, USA.
00021  */
00022 
00023 
00024 /*----------------------------------------------------------------
00025  * project ....: LTI Digital Image/Signal Processing Library
00026  * file .......: ltiCentroidClustering.h
00027  * authors ....: Peter Doerfler
00028  * organization: LTI, RWTH Aachen
00029  * creation ...: 29.08.2001
00030  * revisions ..: $Id: ltiCentroidClustering.h,v 1.5 2006/02/07 18:12:34 ltilib Exp $
00031  */
00032 
00033 #include "ltiObject.h"
00034 #include "ltiClustering.h"
00035 
00036 
00037 #ifndef _LTI_CENTROIDCLUSTERING_H_
00038 #define _LTI_CENTROIDCLUSTERING_H_
00039 
00040 namespace lti {
00041 
00042 
00043   /**
00044    * Base class for all clustering methods that use centroids or prototypes
00045    * for describing individual clusters. A classify(const dvector&) method
00046    * is implemented that should work for most subclasses.
00047    */
00048   class centroidClustering : public clustering {
00049 
00050   public:
00051 
00052     /**
00053      * default constructor
00054      */
00055     centroidClustering();
00056 
00057     /**
00058      * copy constructor
00059      * @param other the %object to be copied
00060      */
00061     centroidClustering(const centroidClustering& other);
00062 
00063     /**
00064      * destructor
00065      */
00066     virtual ~centroidClustering();
00067 
00068     /**
00069      * returns the name of this type ("centroidClustering")
00070      */
00071     virtual const char* getTypeName() const;
00072 
00073     /**
00074      * copy data of "other" functor.
00075      * @param other the functor to be copied
00076      * @return a reference to this functor %object
00077      */
00078     centroidClustering& copy(const centroidClustering& other);
00079 
00080     /**
00081      * returns used parameters
00082      */
00083     const parameters& getParameters() const;
00084 
00085     /**
00086      * classifies a new data point. <p>
00087      * This method can be used by all centroid classifiers if they properly
00088      * initialize the classifier::output member. I.e. for each output unit
00089      * the list of probabilities may contain only one entry with probability
00090      * one and each id may be used only once. <p>
00091      * Since the classifier::output expects a probability vector as result
00092      * from the clustering method, the dissimilarity measure usually returned
00093      * must be converted to a similarity measure. Here, this is done by first
00094      * normalizing the vector of dissimilarities, then subtracting this vector
00095      * from a vector filled with ones and, finally, normalizing the result.
00096      * This operation yields similarity values between zero and one for
00097      * arbitrary scales of the feature space. Information about possible reject
00098      * cases is lost through the first normalizaton, though.
00099      *
00100      * @param feature vector to be classified
00101      * @param result result as described above
00102      * @return true if successful, false otherwise
00103      */
00104     virtual bool classify(const dvector& feature, outputVector& result) const;
00105 
00106     /**
00107      * Returns a const reference to the centroids of the clustering
00108      * @return const reference to the centroids
00109      */
00110     const dmatrix& getCentroids() const;
00111 
00112     /**
00113      * Declared so it wont be forgotten
00114      */
00115     virtual bool train(const dmatrix& input) =0;
00116 
00117     /**
00118      * Calls clustering::train(const dmatrix&, ivector&)
00119      */
00120     virtual bool train(const dmatrix& input,
00121                        ivector& ids);
00122 
00123     /**
00124      * write the rbf classifier in the given ioHandler
00125      * @param handler the ioHandler to be used
00126      * @param complete if true (the default) the enclosing begin/end will
00127      *        be also written, otherwise only the data block will be written.
00128      * @return true if write was successful
00129      */
00130     virtual bool write(ioHandler& handler,const bool complete=true) const;
00131 
00132     /**
00133      * read the rbf classifier from the given ioHandler
00134      * @param handler the ioHandler to be used
00135      * @param complete if true (the default) the enclosing begin/end will
00136      *        be also written, otherwise only the data block will be written.
00137      * @return true if write was successful
00138      */
00139     virtual bool read(ioHandler& handler,const bool complete=true);
00140 
00141   protected:
00142 
00143     /**
00144      * returns current parameters. (non const! -> protected)
00145      */
00146 //  parameters& getParameters() {return *params;};
00147 
00148     /**
00149      * matrix containing the centroids formed by the clustering method
00150      */
00151     dmatrix centroids;
00152 
00153 
00154   private:
00155 
00156     /**
00157      * Used for calculating a similarity measure from the dissimilarities
00158      * return by the clustering: 1-d
00159      */
00160     static double probabilize(const double& d);
00161 
00162     };
00163 
00164 }
00165 
00166 #endif

Generated on Sat Apr 10 15:25:12 2010 for LTI-Lib by Doxygen 1.6.1