LTI-Lib latest version v1.9 - last update 10 Apr 2010

ltiUnsupervisedClassifier.h

00001 /*
00002  * Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
00003  * Lehrstuhl fuer Technische Informatik, RWTH-Aachen, Germany
00004  *
00005  * This file is part of the LTI-Computer Vision Library (LTI-Lib)
00006  *
00007  * The LTI-Lib is free software; you can redistribute it and/or
00008  * modify it under the terms of the GNU Lesser General Public License (LGPL)
00009  * as published by the Free Software Foundation; either version 2.1 of
00010  * the License, or (at your option) any later version.
00011  *
00012  * The LTI-Lib is distributed in the hope that it will be
00013  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
00014  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU Lesser General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU Lesser General Public
00018  * License along with the LTI-Lib; see the file LICENSE.  If
00019  * not, write to the Free Software Foundation, Inc., 59 Temple Place -
00020  * Suite 330, Boston, MA 02111-1307, USA.
00021  */
00022 
00023 
00024 /*----------------------------------------------------------------
00025  * project ....: LTI Digital Image/Signal Processing Library
00026  * file .......: ltiUnsupervisedClassifier.h
00027  * authors ....: Peter Doerfler
00028  * organization: LTI, RWTH Aachen
00029  * creation ...: 29.08.2001
00030  * revisions ..: $Id: ltiUnsupervisedClassifier.h,v 1.4 2006/02/07 18:27:50 ltilib Exp $
00031  */
00032 
00033 
00034 #ifndef _LTI_UNSUPERVISEDCLASSIFIER_H_
00035 #define _LTI_UNSUPERVISEDCLASSIFIER_H_
00036 
00037 #include "ltiClassifier.h"
00038 #include "ltiVector.h"
00039 #include "ltiMatrix.h"
00040 
00041 namespace lti {
00042 
00043   /**
00044    * Abstract class, parent of all unsupervised classifiers.
00045    * This class defines the interface for all unsupervised train methods.
00046    */
00047   class unsupervisedClassifier : public classifier {
00048 
00049   public:
00050 
00051     // --------------------------------------------------
00052     // unsupervisedClassifier::parameters
00053     // --------------------------------------------------
00054 
00055     /**
00056      * the parameters for the class unsupervisedClassifier are the
00057      * same as for classifier, except that the default value of
00058      * mulipleMode is changed to outputTemplate::Ignore.
00059      */
00060     class parameters : public classifier::parameters {
00061     public:
00062 
00063       /**
00064        * default constructor.  Changes the defaults value of
00065        * parameters.multipleMode to outputTemplate::Ignore.
00066        */
00067       parameters();
00068 
00069       /**
00070        * copy constructor
00071        * @param other the parameters %object to be copied
00072        */
00073       parameters(const parameters& other);
00074 
00075       /**
00076        * destructor
00077        */
00078       virtual ~parameters();
00079 
00080       /**
00081        * returns name of this type
00082        */
00083       const char* getTypeName() const;
00084 
00085       /**
00086        * copy the contents of a parameters %object
00087        * @param other the parameters %object to be copied
00088        * @return a reference to this parameters %object
00089        */
00090       parameters& copy(const parameters& other);
00091 
00092       /**
00093        * Alias for copy
00094        */
00095       inline parameters& operator=(const parameters& other) {
00096         return copy(other);
00097       }
00098 
00099     };
00100 
00101     /**
00102      * default constructor
00103      */
00104     unsupervisedClassifier();
00105 
00106     /**
00107      * copy constructor
00108      * @param other the object to be copied
00109      */
00110     unsupervisedClassifier(const unsupervisedClassifier& other);
00111 
00112     /**
00113      * returns the name of this type ("unsupervisedClassifier")
00114      */
00115     virtual const char* getTypeName() const;
00116 
00117     /**
00118      * copy data of "other" functor.
00119      * @param other the functor to be copied
00120      * @return a reference to this functor object
00121      */
00122     unsupervisedClassifier& copy(const unsupervisedClassifier& other);
00123 
00124     /**
00125      * returns used parameters
00126      */
00127     const parameters& getParameters() const;
00128 
00129     /**
00130      * Unsupervised training.
00131      * The vectors in the <code>input</code> matrix
00132      * will be clustered using each specific method.
00133      * @param input the matrix with the input vectors (each row is a training
00134      *              vector)
00135      * @return true if successful, false otherwise. (if false you can check
00136      *              the error message with getStatusString())
00137      */
00138     virtual bool train(const dmatrix& input) =0;
00139 
00140     /**
00141      * Unsupervised training.  The vectors in the <code>input</code>
00142      * matrix will be put into groups according to the training
00143      * algorithm.  Additionally, an integer indicating the class each
00144      * point belongs to is returned.
00145      *
00146      * By default this method uses the other train method
00147      * (see train(const dmatrix&)) and then calls
00148      * classifier::classify(const dvector&) to get the ids for each
00149      * train-vector. These ids are then returned.
00150      *
00151      * @param input the matrix with the input vectors
00152      *              (each row is a training vector)
00153      * @param ids vector of class ids for each input point
00154      * @return true if successful, false otherwise. (if false you can check
00155      *              the error message with getStatusString()) */
00156     virtual bool train(const dmatrix& input, ivector& ids);
00157 
00158     /**
00159      * Classification.
00160      * Classifies the feature and returns the outputVector with
00161      * the classification result.
00162      * @param feature the %vector to be classified
00163      * @param result the result of the classification
00164      * @return false if an error occurred during classification else true
00165      */
00166     virtual bool
00167       classify(const dvector& feature, outputVector& result) const =0;
00168 
00169   protected:
00170 
00171     /**
00172      * Randomly selects numberOfPoints points (rows) from the data matrix.
00173      * If nubmerOfPoints is greater than the number of points in data,
00174      * points will be multiply selected.
00175      * @param data contains points to select from in rows
00176      * @param numberOfPoints number of points expected as result
00177      * @param randomPoints the points randomly selected from data
00178      * @return false if something went wrong, else true
00179      */
00180     bool selectRandomPoints(const dmatrix& data,
00181                             int numberOfPoints,
00182                             dmatrix& randomPoints);
00183   };
00184 }
00185 
00186 #endif

Generated on Sat Apr 10 15:26:21 2010 for LTI-Lib by Doxygen 1.6.1