LTI-Lib latest version v1.9 - last update 10 Apr 2010

ltiSOFM2D.h

00001 /*
00002  * Copyright (C) 2002, 2003, 2004, 2005, 2006
00003  * Lehrstuhl fuer Technische Informatik, RWTH-Aachen, Germany
00004  *
00005  * This file is part of the LTI-Computer Vision Library (LTI-Lib)
00006  *
00007  * The LTI-Lib is free software; you can redistribute it and/or
00008  * modify it under the terms of the GNU Lesser General Public License (LGPL)
00009  * as published by the Free Software Foundation; either version 2.1 of
00010  * the License, or (at your option) any later version.
00011  *
00012  * The LTI-Lib is distributed in the hope that it will be
00013  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
00014  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU Lesser General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU Lesser General Public
00018  * License along with the LTI-Lib; see the file LICENSE.  If
00019  * not, write to the Free Software Foundation, Inc., 59 Temple Place -
00020  * Suite 330, Boston, MA 02111-1307, USA.
00021  */
00022 
00023 
00024 /*--------------------------------------------------------------------
00025  * project ....: LTI-Lib: Image Processing and Computer Vision Library
00026  * file .......: ltiSOFM2D.h
00027  * authors ....: Peter Doerfler
00028  * organization: LTI, RWTH Aachen
00029  * creation ...: 20.8.2002
00030  * revisions ..: $Id: ltiSOFM2D.h,v 1.6 2006/02/07 18:24:07 ltilib Exp $
00031  */
00032 
00033 #ifndef _LTI_S_O_F_M2_D_H_
00034 #define _LTI_S_O_F_M2_D_H_
00035 
00036 #include "ltiSOFM.h"
00037 #include "ltiLinearKernels.h"
00038 //#include "ltiImage.h"
00039 
00040 namespace lti {
00041   /**
00042    *  This is a Self-Organizing Feature Map with a 2-D grid of neurons.
00043    */
00044   class SOFM2D : public SOFM {
00045   public:
00046     /**
00047      * the parameters for the class SOFM2D
00048      */
00049     class parameters : public SOFM::parameters {
00050     public:
00051       /**
00052        * default constructor
00053        */
00054       parameters();
00055 
00056       /**
00057        * copy constructor
00058        * @param other the parameters object to be copied
00059        */
00060       parameters(const parameters& other);
00061 
00062       /**
00063        * destructor
00064        */
00065       virtual ~parameters();
00066 
00067       /**
00068        * returns name of this type
00069        */
00070       const char* getTypeName() const;
00071 
00072       /**
00073        * copy the contents of a parameters object
00074        * @param other the parameters object to be copied
00075        * @return a reference to this parameters object
00076        */
00077       parameters& copy(const parameters& other);
00078 
00079       /**
00080        * copy the contents of a parameters object
00081        * @param other the parameters object to be copied
00082        * @return a reference to this parameters object
00083        */
00084       parameters& operator=(const parameters& other);
00085 
00086 
00087       /**
00088        * returns a pointer to a clone of the parameters
00089        */
00090       virtual classifier::parameters* clone() const;
00091 
00092       /**
00093        * write the parameters in the given ioHandler
00094        * @param handler the ioHandler to be used
00095        * @param complete if true (the default) the enclosing begin/end will
00096        *        be also written, otherwise only the data block will be written.
00097        * @return true if write was successful
00098        */
00099       virtual bool write(ioHandler& handler,const bool complete=true) const;
00100 
00101       /**
00102        * read the parameters from the given ioHandler
00103        * @param handler the ioHandler to be used
00104        * @param complete if true (the default) the enclosing begin/end will
00105        *        be also written, otherwise only the data block will be written.
00106        * @return true if write was successful
00107        */
00108       virtual bool read(ioHandler& handler,const bool complete=true);
00109 
00110 #     ifdef _LTI_MSC_6
00111       /**
00112        * this function is required by MSVC only, as a workaround for a
00113        * very awful bug, which exists since MSVC V.4.0, and still by
00114        * V.6.0 with all bugfixes (so called "service packs") remains
00115        * there...  This method is also public due to another bug, so please
00116        * NEVER EVER call this method directly: use read() instead
00117        */
00118       bool readMS(ioHandler& handler,const bool complete=true);
00119 
00120       /**
00121        * this function is required by MSVC only, as a workaround for a
00122        * very awful bug, which exists since MSVC V.4.0, and still by
00123        * V.6.0 with all bugfixes (so called "service packs") remains
00124        * there...  This method is also public due to another bug, so please
00125        * NEVER EVER call this method directly: use write() instead
00126        */
00127       bool writeMS(ioHandler& handler,const bool complete=true) const;
00128 #     endif
00129 
00130       // ------------------------------------------------
00131       // the parameters
00132       // ------------------------------------------------
00133 
00134       /**
00135        * The dimensions of the grid can be given explicitely
00136        * (calculateSize=false) by setting sizeX and sizeY or
00137        * calculated from the distribution of the training points. In
00138        * the latter case, the two highest eigenvalues are calculated
00139        * and multiplied by factor that after rounding the error to the
00140        * given area is as small as possible. This method yields better
00141        * unfolding of the grid at the cost of more calculations and
00142        * possibly failure due to singularity of the covariance matrix
00143        * of the training samples.<p>
00144        * The default is false.
00145        */
00146       bool calculateSize;
00147 
00148       /**
00149        * size of the grid of neurons in the first dimension. Default 0.
00150        */
00151       int sizeX;
00152 
00153       /**
00154        * size of the grid of neurons in the second dimension. Default 0.
00155        */
00156       int sizeY;
00157 
00158       /**
00159        * approximate area of the grid when the dimension's sizes are
00160        * calculated from the distribution of training points. Default 0.
00161        */
00162       int area;
00163 
00164     };
00165 
00166     /**
00167      * default constructor
00168      */
00169     SOFM2D();
00170 
00171     /**
00172      * copy constructor
00173      * @param other the object to be copied
00174      */
00175     SOFM2D(const SOFM2D& other);
00176 
00177     /**
00178      * destructor
00179      */
00180     virtual ~SOFM2D();
00181 
00182     /**
00183      * returns the name of this type ("SOFM2D")
00184      */
00185     virtual const char* getTypeName() const;
00186 
00187     /**
00188      * copy data of "other" classifier.
00189      * @param other the classifier to be copied
00190      * @return a reference to this classifier object
00191      */
00192     SOFM2D& copy(const SOFM2D& other);
00193 
00194     /**
00195      * alias for copy member
00196      * @param other the classifier to be copied
00197      * @return a reference to this classifier object
00198      */
00199     SOFM2D& operator=(const SOFM2D& other);
00200 
00201     /**
00202      * returns a pointer to a clone of this classifier.
00203      */
00204     virtual classifier* clone() const;
00205 
00206     /**
00207      * returns used parameters
00208      */
00209     const parameters& getParameters() const;
00210 
00211     /**
00212      * Unsupervised training.  The vectors in the <code>input</code>
00213      * matrix will be put into groups according to the training
00214      * algorithm.  Additionally, an integer indicating the class each
00215      * point belongs to is returned. <p> By default this method uses
00216      * the other train method train(const dmatrix&) and then
00217      * calls classify(const dvector&) to get the ids for each
00218      * trainvector. These ids are then returned.
00219      * @param input the matrix with the input vectors (each row is a training
00220      *              vector)
00221      * @param ids vector of class ids for each input point
00222      * @return true if successful, false otherwise. (if false you can check
00223      *              the error message with getStatusString())
00224      */
00225     virtual bool train(const dmatrix& input,
00226                        ivector& ids);
00227 
00228     /**
00229      * Unsupervised training.
00230      * The row vectors in the <code>input</code> matrix
00231      * are used for training of the classifier.
00232      * @param input the matrix with the input vectors (each row is a training
00233      *              vector)
00234      * @return true if successful, false otherwise. (if false you can check
00235      *              the error message with getStatusString())
00236      */
00237     virtual bool train(const dmatrix& input);
00238 
00239     //TODO Check whether you really need a new classify method.
00240     // In some cases the superclasses method will suffice. Then just
00241     // delete the declaration and its implementation stump.
00242 
00243     /**
00244      * Classification.
00245      * Classifies the feature and returns the outputVector with
00246      * the classification result.
00247      * @param feature the %vector to be classified
00248      * @param result the result of the classification
00249      * @return false if an error occurred during classification else true
00250      */
00251     virtual bool
00252       classify(const dvector& feature, outputVector& result) const;
00253 
00254     /**
00255      * returns the size (x,y) of the feature map.
00256      */
00257     inline point size() const {
00258       point p(sizeX,sizeY);
00259       return p;
00260     };
00261 
00262     /**
00263      * Returns the size of the map in x-direction (number of columns)
00264      */
00265     inline int xSize() const {return sizeX;};
00266 
00267     /**
00268      * Returns the size of the map in y-direction (number of rows)
00269      */
00270     inline int ySize() const {return sizeY;};
00271 
00272     /**
00273      * write the SOFM2D in the given ioHandler
00274      * @param handler the ioHandler to be used
00275      * @param complete if true (the default) the enclosing begin/end will
00276      *        be also written, otherwise only the data block will be written.
00277      * @return true if write was successful
00278      */
00279     virtual bool write(ioHandler& handler,const bool complete=true) const;
00280 
00281     /**
00282      * read the SOFM2D from the given ioHandler
00283      * @param handler the ioHandler to be used
00284      * @param complete if true (the default) the enclosing begin/end will
00285      *        be also written, otherwise only the data block will be written.
00286      * @return true if write was successful
00287      */
00288     virtual bool read(ioHandler& handler,const bool complete=true);
00289 
00290 
00291   protected:
00292 
00293     /** size of the first dimension */
00294     int sizeX;
00295     /** size of the second dimension */
00296     int sizeY;
00297 
00298     /** the highest eigenvalue of the train data */
00299     double eva1;
00300     /** the second highest eigenvalue of the train data */
00301     double eva2;
00302     /** the the eigenvector corresponding to eva1 */
00303     dvector eve1;
00304     /** the the eigenvector corresponding to eva2 */
00305     dvector eve2;
00306 
00307     /** calculate sizeX and sizeY in case of param.calulateSize is true */
00308     bool calcSize(const dmatrix& data);
00309 
00310     /** initializes the grid according to parameters.initType */
00311     bool initGrid(const dmatrix& data);
00312 
00313     /** calculate the neigborhood kernel */
00314     void getNeighborhoodKernel(const int& maxN, kernel2D<double>& facN);
00315 
00316     /** train the SOFM using L1- or L2-Norm */
00317     bool trainDist(const dmatrix& data);
00318 
00319     /** train the SOFM using dot product */
00320     bool trainDot(const dmatrix& data);
00321   };
00322 }
00323 
00324 #endif

Generated on Sat Apr 10 15:26:13 2010 for LTI-Lib by Doxygen 1.6.1