LTI-Lib latest version v1.9 - last update 10 Apr 2010

ltiSffs.h

00001 /*
00002  * Copyright (C) 2002, 2003, 2004, 2005, 2006
00003  * Lehrstuhl fuer Technische Informatik, RWTH-Aachen, Germany
00004  * 
00005  * This file is part of the LTI-Computer Vision Library (LTI-Lib)
00006  *
00007  * The LTI-Lib is free software; you can redistribute it and/or
00008  * modify it under the terms of the GNU Lesser General Public License (LGPL)
00009  * as published by the Free Software Foundation; either version 2.1 of
00010  * the License, or (at your option) any later version.
00011  *
00012  * The LTI-Lib is distributed in the hope that it will be
00013  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
00014  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU Lesser General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU Lesser General Public 
00018  * License along with the LTI-Lib; see the file LICENSE.  If
00019  * not, write to the Free Software Foundation, Inc., 59 Temple Place -
00020  * Suite 330, Boston, MA 02111-1307, USA.  
00021  */ 
00022 
00023  
00024 /*--------------------------------------------------------------------
00025  * project ....: LTI-Lib: Image Processing and Computer Vision Library
00026  * file .......: ltiSffs.h
00027  * authors ....: Jens Paustenbach
00028  * organization: LTI, RWTH Aachen
00029  * creation ...: 11.7.2002
00030  * revisions ..: $Id: ltiSffs.h,v 1.7 2006/02/07 18:25:59 ltilib Exp $
00031  */
00032 
00033 #ifndef _LTI_SFFS_H_
00034 #define _LTI_SFFS_H_
00035 
00036 
00037 #include "ltiVector.h"
00038 #include "ltiMatrix.h"
00039 #include "ltiFeatureSelector.h"
00040 #include "ltiCostFunction.h"
00041 // #include "ltiSupervisedInstanceClassifier.h"
00042 
00043 namespace lti {
00044   /**
00045    *  Implemantation of the sequential floating forward search algorithm to
00046    *  select the best features from a data set. 
00047    *  This algorithm is implented from: P. Pudil, F.J. Ferri, J. Novovicova, 
00048    *  J. Kittler: "Floating Search Methods for Feature Selection with 
00049    *  nonmonotonic criterion Functions" Procedings of the IEEE Intl. Conf.
00050    *  on Pattern Recognition, 279-283, 1994;
00051    *  The original SFFS-Algorithm is discriped in P.Pudil,J.Novovicova,Kittler
00052    *  "Floating search methods in feature selection" Pattern Recogniton 
00053    *  Letters 15, pages 1119-1125
00054    */
00055   class sffs : public featureSelector {
00056   public:
00057     /**
00058      * the parameters for the class sffs
00059      */
00060     class parameters : public featureSelector::parameters {
00061     public:
00062       /**
00063        * default constructor
00064        */
00065       parameters();
00066 
00067       /**
00068        * copy constructor
00069        * @param other the parameters object to be copied
00070        */
00071       parameters(const parameters& other);
00072 
00073       /**
00074        * destructor
00075        */
00076       ~parameters();
00077 
00078       /**
00079        * returns name of this type
00080        */
00081       const char* getTypeName() const;
00082 
00083       /**
00084        * copy the contents of a parameters object
00085        * @param other the parameters object to be copied
00086        * @return a reference to this parameters object
00087        */
00088       parameters& copy(const parameters& other);
00089    
00090       /**
00091        * copy the contents of a parameters object
00092        * @param other the parameters object to be copied
00093        * @return a reference to this parameters object
00094        */
00095       parameters& operator=(const parameters& other);
00096 
00097 
00098       /**
00099        * returns a pointer to a clone of the parameters
00100        */
00101       virtual functor::parameters* clone() const;
00102 
00103       /**
00104        * write the parameters in the given ioHandler
00105        * @param handler the ioHandler to be used
00106        * @param complete if true (the default) the enclosing begin/end will
00107        *        be also written, otherwise only the data block will be written.
00108        * @return true if write was successful
00109        */
00110       virtual bool write(ioHandler& handler,const bool complete=true) const;
00111 
00112       /**
00113        * read the parameters from the given ioHandler
00114        * @param handler the ioHandler to be used
00115        * @param complete if true (the default) the enclosing begin/end will
00116        *        be also written, otherwise only the data block will be written.
00117        * @return true if write was successful
00118        */
00119       virtual bool read(ioHandler& handler,const bool complete=true);
00120 
00121 #     ifdef _LTI_MSC_6     
00122       /**
00123        * this function is required by MSVC only, as a workaround for a
00124        * very awful bug, which exists since MSVC V.4.0, and still by
00125        * V.6.0 with all bugfixes (so called "service packs") remains
00126        * there...  This method is also public due to another bug, so please
00127        * NEVER EVER call this method directly: use read() instead
00128        */
00129       bool readMS(ioHandler& handler,const bool complete=true);
00130 
00131       /**
00132        * this function is required by MSVC only, as a workaround for a
00133        * very awful bug, which exists since MSVC V.4.0, and still by
00134        * V.6.0 with all bugfixes (so called "service packs") remains
00135        * there...  This method is also public due to another bug, so please
00136        * NEVER EVER call this method directly: use write() instead
00137        */
00138       bool writeMS(ioHandler& handler,const bool complete=true) const;
00139 #     endif
00140 
00141       // ------------------------------------------------
00142       // the parameters
00143       // ------------------------------------------------
00144 
00145       /** 
00146        * the cost function that is used to decide which features are the best
00147        * in the context of the cost function 
00148        */
00149       costFunction* usedCostFunction;
00150 
00151 //       /**
00152 //        * the classifier used in the cross validator
00153 //        */
00154 //       supervisedInstanceClassifier* classifier;
00155 
00156 //       enum eCostFunctions {
00157 //         bhattacharyyaDistance,
00158 //         mahalanobisDistance,
00159 //         crossValidation
00160 //       };
00161 
00162 //       /** 
00163 //        * The cost function that is used to decide if a feature is better than 
00164 //        * an other feature.
00165 //        */
00166 //       eCostFunctions costFunction;
00167 
00168 
00169     };
00170 
00171     /**
00172      * default constructor
00173      */
00174     sffs();
00175 
00176     /**
00177      * copy constructor
00178      * @param other the object to be copied
00179      */
00180     sffs(const sffs& other);
00181 
00182     /**
00183      * destructor
00184      */
00185     virtual ~sffs();
00186 
00187     /**
00188      * returns the name of this type ("sffs")
00189      */
00190     virtual const char* getTypeName() const;
00191   
00192     //TODO: comment your apply methods!
00193     
00194 //      /**
00195 //       * operates on the given %parameter.
00196 //       * @param srcdest dmatrix with the source data.  The result
00197 //       *                 will be left here too.
00198 //       * @return true if apply successful or false otherwise.
00199 //       */
00200 //      bool apply(dmatrix& srcdest) const;
00201 
00202 //     /**
00203 //      * operates on a copy of the given %parameters.
00204 //      * @param src dmatrix with the source data.
00205 //      * @param dest dmatrix where the result will be left.
00206 //      * @return true if apply successful or false otherwise.
00207 //      */
00208 //     bool apply(const dmatrix& src,const ivector& srcIds, dmatrix& dest) const;
00209 
00210     /**
00211      * extracts the most significant features from a source data set
00212      * @param src the src data
00213      * @param srcIds the cluster ids corresponding to the data points in src
00214      * @param dest the extracted features
00215      * @return true if apply successful or false otherwise.
00216      */
00217     bool apply(const dmatrix& src,const ivector& srcIds,dmatrix& dest) const;
00218       
00219     /**
00220      * copy data of "other" functor.
00221      * @param other the functor to be copied
00222      * @return a reference to this functor object
00223      */
00224     sffs& copy(const sffs& other);
00225 
00226     /**
00227      * alias for copy member
00228      * @param other the functor to be copied
00229      * @return a reference to this functor object
00230      */
00231     sffs& operator=(const sffs& other);
00232 
00233     /**
00234      * returns a pointer to a clone of this functor.
00235      */
00236     virtual functor* clone() const;
00237 
00238     /**
00239      * returns used parameters
00240      */
00241     const parameters& getParameters() const;
00242 
00243   };
00244 }
00245 
00246 #endif

Generated on Sat Apr 10 15:26:10 2010 for LTI-Lib by Doxygen 1.6.1