latest version v1.9 - last update 10 Apr 2010 |
00001 /* 00002 * Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 00003 * Lehrstuhl fuer Technische Informatik, RWTH-Aachen, Germany 00004 * 00005 * This file is part of the LTI-Computer Vision Library (LTI-Lib) 00006 * 00007 * The LTI-Lib is free software; you can redistribute it and/or 00008 * modify it under the terms of the GNU Lesser General Public License (LGPL) 00009 * as published by the Free Software Foundation; either version 2.1 of 00010 * the License, or (at your option) any later version. 00011 * 00012 * The LTI-Lib is distributed in the hope that it will be 00013 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 00014 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 * GNU Lesser General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU Lesser General Public 00018 * License along with the LTI-Lib; see the file LICENSE. If 00019 * not, write to the Free Software Foundation, Inc., 59 Temple Place - 00020 * Suite 330, Boston, MA 02111-1307, USA. 00021 */ 00022 00023 00024 /*---------------------------------------------------------------- 00025 * project ....: LTI Digital Image/Signal Processing Library 00026 * file .......: ltiRealInvFFT.h 00027 * authors ....: Stefan Syberichs, Pablo Alvarado 00028 * organization: LTI, RWTH Aachen 00029 * creation ...: 06.12.99 00030 * revisions ..: $Id: ltiRealInvFFT.h,v 1.3 2006/02/08 11:44:08 ltilib Exp $ 00031 */ 00032 00033 00034 #ifndef _LTI_REAL_INV_FFT_H_ 00035 #define _LTI_REAL_INV_FFT_H_ 00036 00037 #include "ltiFunctor.h" 00038 #include "ltiImage.h" 00039 #include "ltiMath.h" 00040 #include "ltiTransform.h" 00041 #include "ltiRealFFT.h" 00042 00043 namespace lti { 00044 00045 /** 00046 * A class for inverse FFT. 00047 * realFFT is a class for Fast Fourier Transforms on lti::vectors 00048 * and lti::matrix<float>. The input can either be in polar or cartesic 00049 * format, specified by the parameter inputMode. The FFT on matrix<float> 00050 * works full-sized input matrices (i.e the size of the output 00051 * data), while the vector FFT works only one half (!) of the 00052 * Fourier coefficients per dimension (real and imaginary). Note 00053 * that cartesic input data computes faster! The apply-methods are 00054 * based on fast inverse FFT-routines written by Takuya Ooura (the original 00055 * code can be found 00056 * <a href="http://momonga.t.u-tokyo.ac.jp/~ooura/fft.html">here</a>) 00057 * that have been adapted for the use on lti::vectors and matrix<float>. 00058 * Note that the cartesic output is faster ! 00059 * Usage: 00060 * 00061 * \code 00062 * #include "ltiRealInvFFT.h" 00063 * #include "ltiRealFFT.h" 00064 * 00065 * lti::realFFT fft2d; // for 2-dimensional FFT 00066 * lti::realInvFFT ifft2d; // for 2-dimensional inverse FFT 00067 * 00068 * lti::realFFT::parameters par2d; 00069 * 00070 * par2d.mode = lti::realFFT::parameters::Polar; 00071 * 00072 * ifft2d.setParameters(par2d); 00073 * fft2d.setParameters(par2d); 00074 * 00075 * 00076 * fft2d.apply(R, re, im); // the actual FFT 00077 * 00078 * ifft2d.apply(re, im, back); // inverse FFT 00079 * \endcode 00080 */ 00081 class realInvFFT : public transform { 00082 public: 00083 00084 /** 00085 * Parameter class of the realInvFFT class (are compatible with the 00086 * parameters of the realFFT functor). 00087 */ 00088 typedef realFFT::parameters parameters; 00089 00090 /** 00091 * constructor 00092 */ 00093 realInvFFT(void); 00094 00095 /** 00096 * detsructor 00097 */ 00098 ~realInvFFT(void); 00099 00100 /** 00101 * returns current parameters. 00102 */ 00103 const parameters& getParameters() const; 00104 00105 /** 00106 * returns the name of this type 00107 */ 00108 virtual const char* getTypeName() const; 00109 00110 /** 00111 * returns a pointer to a clone of the functor. 00112 */ 00113 virtual functor* clone() const; 00114 00115 /** 00116 * on-copy method vor vectors. The input data has the half the size of 00117 * the output data (i.e. only the positive coefficients are used). 00118 * @param realInput the real part of the Fourier coefficients 00119 * (Polar or Cartesic), size (n/2)+1 00120 * @param imagInput the imaginary part of the Fourier coefficients 00121 * (Polar or Cartesic), size (n/2)+1 00122 * @param realOutput the real inverse-computed signal, size n 00123 */ 00124 void apply(const vector<float>& realInput, 00125 const vector<float>& imagInput, 00126 vector<float>& realOutput) const; 00127 00128 /** 00129 * on-copy method vor vectors. The input data has the half the size of 00130 * the output data (i.e. only the positive coefficients are used). 00131 * @param realInput the real part of the Fourier coefficients 00132 * (Polar or Cartesic), size (n/2)+1 00133 * @param imagInput the imaginary part of the Fourier coefficients 00134 * (Polar or Cartesic), size (n/2)+1 00135 * @param realOutput the real inverse-computed signal, size n 00136 */ 00137 void apply(const vector<double>& realInput, 00138 const vector<double>& imagInput, 00139 vector<double>& realOutput) const; 00140 00141 /** 00142 * on-copy method for matrix<float>. The input data has the half the 00143 * size of the output data (i.e. only the positive coefficients are used). 00144 * Note that the DC component of the signal is in the upper-left corner 00145 * of the two-dimensional FFT. (corresponds to the FFT output) 00146 * @param realInput the real part of the Fourier coefficients 00147 * (Polar or Cartesic), size n 00148 * @param imagInput the imaginary part of the Fourier coefficients 00149 * (Polar or Cartesic), size n 00150 * @param realOutput the real inverse-computed signal, size n 00151 */ 00152 void apply(const matrix<float>& realInput, 00153 const matrix<float>& imagInput, 00154 matrix<float>& realOutput) const; 00155 00156 }; 00157 00158 } // namespace lti 00159 #endif