LTI-Lib latest version v1.9 - last update 10 Apr 2010

ltiManualCrispDecisionTree.h

00001 /*
00002  * Copyright (C) 2002, 2003, 2004, 2005, 2006
00003  * Lehrstuhl fuer Technische Informatik, RWTH-Aachen, Germany
00004  *
00005  * This file is part of the LTI-Computer Vision Library (LTI-Lib)
00006  *
00007  * The LTI-Lib is free software; you can redistribute it and/or
00008  * modify it under the terms of the GNU Lesser General Public License (LGPL)
00009  * as published by the Free Software Foundation; either version 2.1 of
00010  * the License, or (at your option) any later version.
00011  *
00012  * The LTI-Lib is distributed in the hope that it will be
00013  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
00014  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU Lesser General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU Lesser General Public
00018  * License along with the LTI-Lib; see the file LICENSE.  If
00019  * not, write to the Free Software Foundation, Inc., 59 Temple Place -
00020  * Suite 330, Boston, MA 02111-1307, USA.
00021  */
00022 
00023 
00024 /*--------------------------------------------------------------------
00025  * project ....: LTI-Lib: Image Processing and Computer Vision Library
00026  * file .......: ltiManualCrispDecisionTree.h
00027  * authors ....: Peter Doerfler
00028  * organization: LTI, RWTH Aachen
00029  * creation ...: 25.2.2002
00030  * revisions ..: $Id: ltiManualCrispDecisionTree.h,v 1.6 2006/02/07 18:21:29 ltilib Exp $
00031  */
00032 
00033 #ifndef _LTI_MANUAL_CRISP_DECISION_TREE_H_
00034 #define _LTI_MANUAL_CRISP_DECISION_TREE_H_
00035 
00036 
00037 #include "ltiMatrix.h"
00038 #include "ltiVector.h"
00039 
00040 #include "ltiCrispDecisionTree.h"
00041 
00042 namespace lti {
00043   /**
00044    * This class serves the manual construction of a crisp decision
00045    * tree with crispNodes that have univariate decision
00046    * functions. Instead of training data, the train method is given
00047    * the nodes' conditions and ids in pre-order. Only one element of
00048    * each row vector can be unequal to zero. This dimension and the
00049    * value are taken for the dimension and threshold of the
00050    * condition. Thus, only univariate decisions can be used. The
00051    * following example shows the data and id values of the train
00052    * method and the corresponding tree:
00053    *
00054    * \verbatim
00055    *        +-     -+         +-  -+
00056    *        | 0 0 2 |         | -1 |
00057    *        | 1 0 0 |         | -1 |
00058    *        | 0 2 0 |         | -1 |
00059    *        | 0 1 0 |         | -1 |
00060    *        | 0 0 0 |         |  2 |
00061    * data = | 0 0 1 |   ids = | -1 |
00062    *        | 0 0 0 |         |  5 |
00063    *        | 0 0 0 |         |  0 |
00064    *        | 0 0 0 |         |  1 |
00065    *        | 0 0 0 |         |  3 |
00066    *        | 0 0 0 |         |  4 |
00067    *        +-     -+         +-  -+
00068    * \endverbatim
00069    *
00070    * \image html manualCrispDecisionTree.png
00071    *
00072    * The outputTemplate %object of the tree will be initialized with the
00073    * ids given in the ids vector. If other or multiple ids are desired, the
00074    * outputTemplate %object must be set manually.
00075    */
00076   class manualCrispDecisionTree : public crispDecisionTree {
00077   public:
00078     /**
00079      * the parameters for the class manualCrispDecisionTree
00080      */
00081     class parameters : public crispDecisionTree::parameters {
00082     public:
00083       /**
00084        * default constructor
00085        */
00086       parameters();
00087 
00088       /**
00089        * copy constructor
00090        * @param other the parameters object to be copied
00091        */
00092       parameters(const parameters& other);
00093 
00094       /**
00095        * destructor
00096        */
00097       virtual ~parameters();
00098 
00099       /**
00100        * returns name of this type
00101        */
00102       const char* getTypeName() const;
00103 
00104       /**
00105        * copy the contents of a parameters object
00106        * @param other the parameters object to be copied
00107        * @return a reference to this parameters object
00108        */
00109       parameters& copy(const parameters& other);
00110 
00111       /**
00112        * copy the contents of a parameters object
00113        * @param other the parameters object to be copied
00114        * @return a reference to this parameters object
00115        */
00116       parameters& operator=(const parameters& other);
00117 
00118 
00119       /**
00120        * returns a pointer to a clone of the parameters
00121        */
00122       virtual classifier::parameters* clone() const;
00123 
00124       /**
00125        * write the parameters in the given ioHandler
00126        * @param handler the ioHandler to be used
00127        * @param complete if true (the default) the enclosing begin/end will
00128        *        be also written, otherwise only the data block will be written.
00129        * @return true if write was successful
00130        */
00131       virtual bool write(ioHandler& handler,const bool complete=true) const;
00132 
00133       /**
00134        * read the parameters from the given ioHandler
00135        * @param handler the ioHandler to be used
00136        * @param complete if true (the default) the enclosing begin/end will
00137        *        be also written, otherwise only the data block will be written.
00138        * @return true if write was successful
00139        */
00140       virtual bool read(ioHandler& handler,const bool complete=true);
00141 
00142 #     ifdef _LTI_MSC_6
00143       /**
00144        * this function is required by MSVC only, as a workaround for a
00145        * very awful bug, which exists since MSVC V.4.0, and still by
00146        * V.6.0 with all bugfixes (so called "service packs") remains
00147        * there...  This method is also public due to another bug, so please
00148        * NEVER EVER call this method directly: use read() instead
00149        */
00150       bool readMS(ioHandler& handler,const bool complete=true);
00151 
00152       /**
00153        * this function is required by MSVC only, as a workaround for a
00154        * very awful bug, which exists since MSVC V.4.0, and still by
00155        * V.6.0 with all bugfixes (so called "service packs") remains
00156        * there...  This method is also public due to another bug, so please
00157        * NEVER EVER call this method directly: use write() instead
00158        */
00159       bool writeMS(ioHandler& handler,const bool complete=true) const;
00160 #     endif
00161 
00162       // ------------------------------------------------
00163       // the parameters
00164       // ------------------------------------------------
00165 
00166       //TODO: comment the parameters of your classifier
00167       // If you add more parameters manually, do not forget to do following:
00168       // 1. indicate in the default constructor the default values
00169       // 2. make sure that the copy member also copy your new parameters
00170       // 3. make sure that the read and write members also read and
00171       //    write your parameters
00172 
00173 
00174     };
00175 
00176     /**
00177      * default constructor
00178      */
00179     manualCrispDecisionTree();
00180 
00181     /**
00182      * copy constructor
00183      * @param other the object to be copied
00184      */
00185     manualCrispDecisionTree(const manualCrispDecisionTree& other);
00186 
00187     /**
00188      * destructor
00189      */
00190     virtual ~manualCrispDecisionTree();
00191 
00192     /**
00193      * returns the name of this type ("manualCrispDecisionTree")
00194      */
00195     virtual const char* getTypeName() const;
00196 
00197     /**
00198      * copy data of "other" classifier.
00199      * @param other the classifier to be copied
00200      * @return a reference to this classifier object
00201      */
00202     manualCrispDecisionTree& copy(const manualCrispDecisionTree& other);
00203 
00204     /**
00205      * alias for copy member
00206      * @param other the classifier to be copied
00207      * @return a reference to this classifier object
00208      */
00209     manualCrispDecisionTree& operator=(const manualCrispDecisionTree& other);
00210 
00211     /**
00212      * returns a pointer to a clone of this classifier.
00213      */
00214     virtual classifier* clone() const;
00215 
00216     /**
00217      * returns used parameters
00218      */
00219     const parameters& getParameters() const;
00220 
00221     /**
00222      * See description of this class
00223      * @param input the conditions of the nodes
00224      * @param ids the ids of the nodes.
00225      * @return true if successful, false otherwise.  (if false you can check
00226      *              the error message with getStatusString())
00227      */
00228     virtual bool train(const dmatrix& input,
00229                        const ivector& ids);
00230 
00231 
00232     //TODO: comment the attributes of your classifier
00233     // If you add more attributes manually, do not forget to do following:
00234     // 1. indicate in the default constructor the default values
00235     // 2. make sure that the copy member also copy your new attributes, or
00236     //    to ensure there, that these attributes are properly initialized.
00237 
00238   };
00239 }
00240 
00241 #endif

Generated on Sat Apr 10 15:25:49 2010 for LTI-Lib by Doxygen 1.6.1