LTI-Lib latest version v1.9 - last update 10 Apr 2010

ltiKMeansClustering.h

00001 /*
00002  * Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
00003  * Lehrstuhl fuer Technische Informatik, RWTH-Aachen, Germany
00004  *
00005  * This file is part of the LTI-Computer Vision Library (LTI-Lib)
00006  *
00007  * The LTI-Lib is free software; you can redistribute it and/or
00008  * modify it under the terms of the GNU Lesser General Public License (LGPL)
00009  * as published by the Free Software Foundation; either version 2.1 of
00010  * the License, or (at your option) any later version.
00011  *
00012  * The LTI-Lib is distributed in the hope that it will be
00013  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
00014  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU Lesser General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU Lesser General Public
00018  * License along with the LTI-Lib; see the file LICENSE.  If
00019  * not, write to the Free Software Foundation, Inc., 59 Temple Place -
00020  * Suite 330, Boston, MA 02111-1307, USA.
00021  */
00022 
00023 
00024 /*----------------------------------------------------------------
00025  * project ....: LTI Digital Image/Signal Processing Library
00026  * file .......: ltiKMeansClustering.h
00027  * authors ....: Peter Doerfler
00028  * organization: LTI, RWTH Aachen
00029  * creation ...: 05.10.2001
00030  * revisions ..: $Id: ltiKMeansClustering.h,v 1.7 2006/02/07 18:18:35 ltilib Exp $
00031  */
00032 
00033 #include "ltiCentroidClustering.h"
00034 
00035 
00036 #ifndef _LTI_KMEANSCLUSTERING_H_
00037 #define _LTI_KMEANSCLUSTERING_H_
00038 
00039 namespace lti {
00040 
00041   /**
00042    * This class implements two versions of k-means-clustering: batch
00043    * and sequential. <p> Both methods are initailized by drawing
00044    * numberOfClusters training points and assigning them as
00045    * centroids. The batch version continues by labeling each training
00046    * point with the centroid it belongs to and then calculating new
00047    * centroids as mean average of the data belonging to each
00048    * cluster. This is continued until a convergence criterion is
00049    * met. <p> The sequential algorithm performs one step of batch
00050    * training. After that training points are analyzed in random
00051    * order. Whenever one data point switches clusters the centroids of
00052    * the old and new cluster of that data point are
00053    * recalculated. Calculation is also stoped by a convergence
00054    * criterion. <p> For both methods the convergence criterion is that
00055    * for one run through the training set none of the training points
00056    * switched clusters.
00057    */
00058   class kMeansClustering : public centroidClustering {
00059 
00060   public:
00061 
00062     /**
00063      * Parameters for kMeansClustering. Only batch and sequential are allowed
00064      * as values for clusterMode. Only other parameter is numberOfClusters.
00065      */
00066     class parameters : public centroidClustering::parameters {
00067 
00068     public:
00069       /**
00070        * default constructor
00071        */
00072       parameters();
00073 
00074       /**
00075        * copy constructor
00076        * @param other the parameters %object to be copied
00077        */
00078       parameters(const parameters& other);
00079 
00080       /**
00081        * destructor
00082        */
00083       virtual ~parameters();
00084 
00085       /**
00086        * returns name of this type
00087        */
00088       const char* getTypeName() const;
00089 
00090       /**
00091        * copy the contents of a parameters %object
00092        * @param other the parameters %object to be copied
00093        * @return a reference to this parameters %object
00094        */
00095       parameters& copy(const parameters& other);
00096 
00097       /**
00098        * returns a pointer to a clone of the parameters
00099        */
00100       virtual classifier::parameters* clone() const;
00101 
00102       /**
00103        * write the parameters in the given ioHandler
00104        * @param handler the ioHandler to be used
00105        * @param complete if true (the default) the enclosing begin/end will
00106        *        be also written, otherwise only the data block will be written.
00107        * @return true if write was successful
00108        */
00109       virtual bool write(ioHandler& handler,const bool complete=true) const;
00110 
00111       /**
00112        * read the parameters from the given ioHandler
00113        * @param handler the ioHandler to be used
00114        * @param complete if true (the default) the enclosing begin/end will
00115        *        be also written, otherwise only the data block will be written.
00116        * @return true if write was successful
00117        */
00118       virtual bool read(ioHandler& handler,const bool complete=true);
00119 
00120 #     ifdef _LTI_MSC_6
00121       /**
00122        * this function is required by MSVC only, as a workaround for a
00123        * very awful bug, which exists since MSVC V.4.0, and still by
00124        * V.6.0 with all bugfixes (so called "service packs") remains
00125        * there...  This method is also public due to another bug, so please
00126        * NEVER EVER call this method directly: use read() instead
00127        */
00128       bool readMS(ioHandler& handler,const bool complete=true);
00129 
00130       /**
00131        * this function is required by MSVC only, as a workaround for a
00132        * very awful bug, which exists since MSVC V.4.0, and still by
00133        * V.6.0 with all bugfixes (so called "service packs") remains
00134        * there...  This method is also public due to another bug, so please
00135        * NEVER EVER call this method directly: use write() instead
00136        */
00137       bool writeMS(ioHandler& handler,const bool complete=true) const;
00138 #     endif
00139 
00140       /** the number of clusters (default 2)*/
00141       int numberOfClusters;
00142     };
00143 
00144 
00145 
00146     /**
00147      * default constructor
00148      */
00149     kMeansClustering();
00150 
00151     /**
00152      * copy constructor
00153      * @param other the %object to be copied
00154      */
00155     kMeansClustering(const kMeansClustering& other);
00156 
00157     /**
00158      * destructor
00159      */
00160     virtual ~kMeansClustering();
00161 
00162     /**
00163      * returns the name of this type ("kMeansClustering")
00164      */
00165     virtual const char* getTypeName() const;
00166 
00167     /**
00168      * copy data of "other" functor.
00169      * @param other the functor to be copied
00170      * @return a reference to this functor %object
00171      */
00172     kMeansClustering& copy(const kMeansClustering& other);
00173 
00174     /**
00175      * returns a pointer to a clone of this classifier.
00176      */
00177     virtual classifier* clone() const;
00178 
00179     /**
00180      * returns used parameters
00181      */
00182     const parameters& getParameters() const;
00183 
00184     /**
00185      * Performs batch or sequential training according to
00186      * the value of parameters::clusterMode.
00187      * @param data the training points
00188      */
00189     virtual bool train(const dmatrix& data);
00190 
00191     /** calls centroidClustering::train(const dmatrix&, ivector&) */
00192     virtual bool train(const dmatrix& input,
00193                        ivector& ids);
00194 
00195   protected:
00196 
00197     /**
00198      * returns current parameters. (non const! -> protected)
00199      */
00200 //  parameters& getParameters() {return *params;};
00201 
00202     /**
00203      * Performs batch k-means clustering, see class description.
00204      */
00205     bool trainBatch(const dmatrix& data);
00206 
00207     /**
00208      * Performs sequential k-means clustering, see class description.
00209      */
00210     bool trainSequential(const dmatrix& data);
00211 
00212   };
00213 
00214 }
00215 
00216 #endif

Generated on Sat Apr 10 15:25:42 2010 for LTI-Lib by Doxygen 1.6.1