LTI-Lib latest version v1.9 - last update 10 Apr 2010

lti::gaussianMixtureModel< T >::parameters Class Reference

The parameters for the class gaussianMixtureModel. More...

#include <ltiGaussianMixtureModel.h>

Inheritance diagram for lti::gaussianMixtureModel< T >::parameters:
Inheritance graph
[legend]
Collaboration diagram for lti::gaussianMixtureModel< T >::parameters:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 parameters ()
 parameters (const parameters &other)
 ~parameters ()
const char * getTypeName () const
parameterscopy (const parameters &other)
virtual bool write (ioHandler &handler, const bool complete=true) const
virtual bool read (ioHandler &handler, const bool complete=true)
virtual functor::parametersclone () const

Public Attributes

int numberOfComponents
int iterations
bool forceIterations
int partialIterations
bool useSM
lambda
emergencyLambda
int cMax
epsilon
bool reportProgress

Detailed Description

template<class T>
class lti::gaussianMixtureModel< T >::parameters

The parameters for the class gaussianMixtureModel.


Constructor & Destructor Documentation

template<class T >
lti::gaussianMixtureModel< T >::parameters::parameters ( void   )  [inline]
template<class T >
lti::gaussianMixtureModel< T >::parameters::parameters ( const parameters other  )  [inline]

copy constructor

Parameters:
other the parameters object to be copied

Reimplemented from lti::statisticsFunctor::parameters.

References lti::gaussianMixtureModel< T >::parameters::copy().

template<class T >
lti::gaussianMixtureModel< T >::parameters::~parameters (  )  [inline, virtual]

destructor

Reimplemented from lti::statisticsFunctor::parameters.


Member Function Documentation

template<class T >
virtual functor::parameters* lti::gaussianMixtureModel< T >::parameters::clone (  )  const [inline, virtual]

returns a pointer to a clone of the parameters

Reimplemented from lti::statisticsFunctor::parameters.

References lti::gaussianMixtureModel< T >::parameters::parameters().

template<class T >
parameters& lti::gaussianMixtureModel< T >::parameters::copy ( const parameters other  )  [inline]
template<class T >
const char* lti::gaussianMixtureModel< T >::parameters::getTypeName ( void   )  const [inline, virtual]

returns name of this type

Reimplemented from lti::statisticsFunctor::parameters.

template<class T >
virtual bool lti::gaussianMixtureModel< T >::parameters::read ( ioHandler handler,
const bool  complete = true 
) [inline, virtual]
template<class T >
virtual bool lti::gaussianMixtureModel< T >::parameters::write ( ioHandler handler,
const bool  complete = true 
) const [inline, virtual]

Member Data Documentation

template<class T >
int lti::gaussianMixtureModel< T >::parameters::cMax

This is a factor for regularizing the covariance matrices in emergencies.

An emergency occurs when the determinant of a covariance matrix is almost zero (which often occurs due to numerical problems). In that case, the diagonal of the matrix will be emphasized by this factor, until the determinant becomes reasonable.

Referenced by lti::gaussianMixtureModel< T >::parameters::copy(), lti::gaussianMixtureModel< T >::parameters::parameters(), lti::gaussianMixtureModel< T >::parameters::read(), and lti::gaussianMixtureModel< T >::parameters::write().

template<class T >
T lti::gaussianMixtureModel< T >::parameters::epsilon

If this is true, the EM always executes the maximum number of iterations, no matter if it converges earlier or not.

Referenced by lti::gaussianMixtureModel< T >::parameters::copy(), and lti::gaussianMixtureModel< T >::parameters::parameters().

template<class T >
int lti::gaussianMixtureModel< T >::parameters::iterations
template<class T >
T lti::gaussianMixtureModel< T >::parameters::lambda

If You use the split-and-merge version, this parameter is used as the regularization constant.

The larger this constant, the more a covariance matrix will be drawn to be the identity matrix.

Referenced by lti::gaussianMixtureModel< T >::parameters::copy(), lti::gaussianMixtureModel< T >::parameters::parameters(), lti::gaussianMixtureModel< T >::parameters::read(), and lti::gaussianMixtureModel< T >::parameters::write().

template<class T >
bool lti::gaussianMixtureModel< T >::parameters::useSM

The documentation for this class was generated from the following file:

Generated on Sat Apr 10 15:28:21 2010 for LTI-Lib by Doxygen 1.6.1