latest version v1.9 - last update 10 Apr 2010 |
the parameters for the class classifier More...
#include <ltiLvq.h>
Public Types | |
enum | eLvqInit { LvqRand, LvqMaxDist } |
Public Member Functions | |
parameters () | |
parameters (const parameters &other) | |
virtual | ~parameters () |
const char * | getTypeName () const |
parameters & | copy (const parameters &other) |
parameters & | operator= (const parameters &other) |
virtual classifier::parameters * | clone () const |
Public Attributes | |
double | learnRate1 |
double | learnRate2 |
double | learnRateFactor |
double | windowSize |
int | nbNeuronsPerClass |
int | nbPresentations1 |
int | nbPresentations2 |
eNormType | norm |
eLvqInit | initType |
bool | flagOlvq1 |
bool | flagOlvq3 |
double | sigmaFactor |
bool | doStatistics |
std::string | statisticsFilename |
std::string | netFilename |
bool | doTrain2 |
bool | saveBest |
bool | correctVs3Best |
the parameters for the class classifier
enumeration to specify the network initialization types.
LvqRand |
random initialization of the vector code |
LvqMaxDist |
initialization with the maximum distance |
lti::lvq::parameters::parameters | ( | ) |
default constructor
Reimplemented from lti::classifier::parameters.
lti::lvq::parameters::parameters | ( | const parameters & | other | ) |
copy constructor
other | the parameters object to be copied |
virtual lti::lvq::parameters::~parameters | ( | ) | [virtual] |
destructor
Reimplemented from lti::classifier::parameters.
virtual classifier::parameters* lti::lvq::parameters::clone | ( | ) | const [virtual] |
returns a pointer to a clone of the parameters
Reimplemented from lti::classifier::parameters.
parameters& lti::lvq::parameters::copy | ( | const parameters & | other | ) |
copy the contents of a parameters object
other | the parameters object to be copied |
Referenced by operator=().
const char* lti::lvq::parameters::getTypeName | ( | ) | const [virtual] |
returns name of this type
Reimplemented from lti::classifier::parameters.
parameters& lti::lvq::parameters::operator= | ( | const parameters & | other | ) | [inline] |
Alias for copy.
other | the parameters object to be copied |
References copy().
if saveBest is true, and correctVs3Best is also true, the best net with the correct result will be saved.
If correctVs3Best is false, the best "three-best" network will be saved. If saveBest is false, this parameter will be ignored.
generate training statistics
has something to do with the statistics.
.. (ask P. Doerfler)
if true, the OLVQ1 algorithm will be used for the first presentation set.
Otherwise the LVQ1 will be used.
if true, the OLVQ3 algorithm will be used for the second presentation set.
Otherwise the LVQ3 will be used.
specify the way the codebook vectors should be initialized
learn rate for LVQ1 or OLVQ1
learn rate for LVQ3 or OLVQ3
learn rate factor used in LVQ3 and OLVQ3 to change the learn rate
number of neurons per class
Referenced by lti::lvq::getDimOutputLayer().
number of presentations for LVQ1 or OLVQ1
number of presentations for LVQ3 or OLVQ3
std::string lti::lvq::parameters::netFilename |
file name for the network
the norm type (L1-, L2-norm)
if true, the "best" network will be saved (see also correctVs3Best)
sigma factor
std::string lti::lvq::parameters::statisticsFilename |
name of the file where the statistics will be saved
window size