LTI-Lib latest version v1.9 - last update 10 Apr 2010

lti::linearRegression< T >::parameters Class Reference

the parameters for the class linearRegression More...

#include <ltiLinearRegression.h>

Inheritance diagram for lti::linearRegression< T >::parameters:
Inheritance graph
[legend]
Collaboration diagram for lti::linearRegression< T >::parameters:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 parameters ()
 parameters (const parameters &other)
 ~parameters ()
const char * getTypeName () const
parameterscopy (const parameters &other)
parametersoperator= (const parameters &other)
virtual functor::parametersclone () const
virtual bool read (ioHandler &handler, const bool complete=true)
virtual bool write (ioHandler &handler, const bool complete=true) const

Public Attributes

int eigenSystemDim

Detailed Description

template<class T>
class lti::linearRegression< T >::parameters

the parameters for the class linearRegression


Constructor & Destructor Documentation

template<class T>
lti::linearRegression< T >::parameters::parameters ( void   )  [inline]
template<class T>
lti::linearRegression< T >::parameters::parameters ( const parameters other  )  [inline]

copy constructor

Parameters:
other the parameters object to be copied

Reimplemented from lti::linearAlgebraFunctor::parameters.

Reimplemented in lti::linearRegressionTracking::parameters.

References lti::linearRegression< T >::parameters::copy().

template<class T>
lti::linearRegression< T >::parameters::~parameters (  )  [inline, virtual]

destructor

Reimplemented from lti::linearAlgebraFunctor::parameters.

Reimplemented in lti::linearRegressionTracking::parameters.


Member Function Documentation

template<class T>
virtual functor::parameters* lti::linearRegression< T >::parameters::clone (  )  const [inline, virtual]
template<class T>
parameters& lti::linearRegression< T >::parameters::copy ( const parameters other  )  [inline]
template<class T>
const char* lti::linearRegression< T >::parameters::getTypeName ( void   )  const [inline, virtual]

returns name of this type

Reimplemented from lti::linearAlgebraFunctor::parameters.

Reimplemented in lti::linearRegressionTracking::parameters.

template<class T>
parameters& lti::linearRegression< T >::parameters::operator= ( const parameters other  )  [inline]

Assigns the contents of the other object to this object.

Reimplemented in lti::linearRegressionTracking::parameters.

References lti::linearRegression< T >::parameters::copy().

template<class T>
virtual bool lti::linearRegression< T >::parameters::read ( ioHandler handler,
const bool  complete = true 
) [inline, virtual]

read the parameters from the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also read, otherwise only the data block will be read.
Returns:
true if write was successful

Reimplemented from lti::linearAlgebraFunctor::parameters.

Reimplemented in lti::linearRegressionTracking::parameters.

References lti::linearRegression< T >::parameters::eigenSystemDim, lti::ioHandler::readBegin(), and lti::ioHandler::readEnd().

template<class T>
virtual bool lti::linearRegression< T >::parameters::write ( ioHandler handler,
const bool  complete = true 
) const [inline, virtual]

write the parameters in the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::linearAlgebraFunctor::parameters.

Reimplemented in lti::linearRegressionTracking::parameters.

References lti::linearRegression< T >::parameters::eigenSystemDim, lti::ioHandler::writeBegin(), and lti::ioHandler::writeEnd().


Member Data Documentation

Dimensionality of the eigensystem which is constructed during calculation of the linear regression matrix.

It must not be bigger than the number of trainingvectors used. The quality of the resulting matrix depends on this value, it should be neither to small nor to big. There are methods to estimate the optimal value in the literature, but none has been implemented in this functor yet. The default is 10.

Referenced by lti::linearRegression< T >::parameters::copy(), lti::linearRegression< T >::parameters::parameters(), lti::linearRegression< T >::parameters::read(), and lti::linearRegression< T >::parameters::write().


The documentation for this class was generated from the following file:

Generated on Sat Apr 10 15:28:29 2010 for LTI-Lib by Doxygen 1.6.1