latest version v1.9 - last update 10 Apr 2010 |
The parameters for the class loweGradientFeature. More...
#include <ltiLoweGradientFeature.h>
Public Member Functions | |
parameters () | |
parameters (const parameters &other) | |
~parameters () | |
const char * | getTypeName () const |
parameters & | copy (const parameters &other) |
parameters & | operator= (const parameters &other) |
virtual functor::parameters * | clone () const |
virtual bool | write (ioHandler &handler, const bool complete=true) const |
virtual bool | read (ioHandler &handler, const bool complete=true) |
Public Attributes | |
float | sigma |
int | locationPartition |
int | histogramPartition |
int | orientationBins |
colorContrastGradient::parameters | gradientParam |
int | pyramidLevels |
scaleSpacePyramid< channel > ::parameters | pyramidParam |
float | locationRelativeRadius |
bool | normalize |
float | cutThreshold |
The parameters for the class loweGradientFeature.
lti::loweGradientFeature::parameters::parameters | ( | ) |
Default constructor.
Reimplemented from lti::featureExtractor::parameters.
lti::loweGradientFeature::parameters::parameters | ( | const parameters & | other | ) |
Copy constructor.
other | the parameters object to be copied |
Reimplemented from lti::featureExtractor::parameters.
lti::loweGradientFeature::parameters::~parameters | ( | ) | [virtual] |
Destructor.
Reimplemented from lti::featureExtractor::parameters.
virtual functor::parameters* lti::loweGradientFeature::parameters::clone | ( | ) | const [virtual] |
Returns a pointer to a clone of the parameters.
Reimplemented from lti::featureExtractor::parameters.
parameters& lti::loweGradientFeature::parameters::copy | ( | const parameters & | other | ) |
Copy the contents of a parameters object.
other | the parameters object to be copied |
Reimplemented from lti::featureExtractor::parameters.
const char* lti::loweGradientFeature::parameters::getTypeName | ( | ) | const [virtual] |
Returns name of this type.
Reimplemented from lti::featureExtractor::parameters.
parameters& lti::loweGradientFeature::parameters::operator= | ( | const parameters & | other | ) |
Copy the contents of a parameters object.
other | the parameters object to be copied |
virtual bool lti::loweGradientFeature::parameters::read | ( | ioHandler & | handler, | |
const bool | complete = true | |||
) | [virtual] |
Read the parameters from the given ioHandler.
handler | the ioHandler to be used | |
complete | if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written. |
Reimplemented from lti::functor::parameters.
virtual bool lti::loweGradientFeature::parameters::write | ( | ioHandler & | handler, | |
const bool | complete = true | |||
) | const [virtual] |
Write the parameters in the given ioHandler.
handler | the ioHandler to be used | |
complete | if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written. |
Reimplemented from lti::functor::parameters.
Cut threshold.
If normalize is set to true, then all histogram values greater to this value will be clipped also to this value. This is supposed to help compensating illumination changes. If you don't want to clip, just set this value to 1.0f.
After all values greater than cutThreshold have been clipped, the resulting vector will be normalized again.
Default value: 0.2f
Parameters for gradient computation.
Please ensure that the mode is "Polar" (the default). Otherwise the results will make no sense.
Default value: colorContrastGradient::parameters()
Histogram Partition.
Each histogram computed will use a number of samples equal to the square of this value.
Default value: 4 (i.e. a total of 16 samples will be used to compute the histogram).
Location relative radius.
This parameter is necessary to gain the information which location belongs to which level.
You should use here exactly the same value given to the location selector functor. Since the real radius of a pixel at level zero is 0.5, you must ensure that the used radius for a location at level zero divide by the factor given here results in 0.5.
Default value: 7
Normalize histogram.
If set to true, each histogram will be normalized, representing a probability distribution.
Default value: true
Number of Bins in the orientation histogram.
Default value: 8 (i.e. only 45 degree steps will be considered)