LTI-Lib latest version v1.9 - last update 10 Apr 2010

lti::fMatrixEstimatorBase::parameters Class Reference

The parameters for the class fMatrixEstimatorBase. More...

#include <ltiFMatrixEstimatorBase.h>

Inheritance diagram for lti::fMatrixEstimatorBase::parameters:
Inheritance graph
[legend]
Collaboration diagram for lti::fMatrixEstimatorBase::parameters:
Collaboration graph
[legend]

List of all members.

Public Types

enum  eRank2Type
enum  eDistanceType

Public Member Functions

 parameters ()
 parameters (const parameters &other)
 ~parameters ()
const char * getTypeName () const
parameterscopy (const parameters &other)
parametersoperator= (const parameters &other)
virtual functor::parametersclone () const
virtual bool write (ioHandler &handler, const bool complete=true) const
virtual bool read (ioHandler &handler, const bool complete=true)

Public Attributes

eRank2Type rank2Enforcement
eDistanceType distanceMeasure

Detailed Description

The parameters for the class fMatrixEstimatorBase.


Member Enumeration Documentation

The distance measure to be used when computing the residual: Sampson or epipolar distance.

The rank 2 constraint may be enforced by the frobenius norm or T-parameterization.


Constructor & Destructor Documentation

lti::fMatrixEstimatorBase::parameters::parameters (  ) 

Default constructor.

Reimplemented from lti::transformEstimator::parameters.

Reimplemented in lti::fMatrixEstimator::parameters.

lti::fMatrixEstimatorBase::parameters::parameters ( const parameters other  ) 

Copy constructor.

Parameters:
other the parameters object to be copied

Reimplemented from lti::transformEstimator::parameters.

Reimplemented in lti::fMatrixEstimator::parameters.

lti::fMatrixEstimatorBase::parameters::~parameters (  )  [virtual]

Destructor.

Reimplemented from lti::transformEstimator::parameters.

Reimplemented in lti::fMatrixEstimator::parameters.


Member Function Documentation

virtual functor::parameters* lti::fMatrixEstimatorBase::parameters::clone (  )  const [virtual]

Returns a pointer to a clone of the parameters.

Reimplemented from lti::transformEstimator::parameters.

Reimplemented in lti::fMatrixEstimator::parameters.

parameters& lti::fMatrixEstimatorBase::parameters::copy ( const parameters other  ) 

Copy the contents of a parameters object.

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

Reimplemented from lti::transformEstimator::parameters.

Reimplemented in lti::fMatrixEstimator::parameters.

const char* lti::fMatrixEstimatorBase::parameters::getTypeName (  )  const [virtual]

Returns name of this type.

Reimplemented from lti::transformEstimator::parameters.

Reimplemented in lti::fMatrixEstimator::parameters.

parameters& lti::fMatrixEstimatorBase::parameters::operator= ( const parameters other  ) 

Copy the contents of a parameters object.

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

Reimplemented from lti::transformEstimator::parameters.

Reimplemented in lti::fMatrixEstimator::parameters.

virtual bool lti::fMatrixEstimatorBase::parameters::read ( ioHandler handler,
const bool  complete = true 
) [virtual]

Read the parameters from the given ioHandler.

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::transformEstimator::parameters.

Reimplemented in lti::fMatrixEstimator::parameters.

virtual bool lti::fMatrixEstimatorBase::parameters::write ( ioHandler handler,
const bool  complete = true 
) const [virtual]

Write the parameters in the given ioHandler.

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::transformEstimator::parameters.

Reimplemented in lti::fMatrixEstimator::parameters.


Member Data Documentation

The distance measure to be used when computing the residual.

The Sampson distance is reported to be superior when iteratively refining the fundamental matrix (e.g. Hartley, Zisserman: 3D Computer Vision), whereas the epipolar distance is equivalent to the residual. Default: Epipolar.

Several ways exist to enforce the rank 2 constraint.

E.g. the fundamental matrix may be replaced by the closest fundamental matrix under the frobenius norm. A different approach is to replace one row and one column by a linear combination of the other two. This is called T-parameterization. The frobenius norm is computational more efficient whereas T-parameterization is reported to produce more accurate results, e.g. when combined with a maximum likelyhood estimator. But with an inaccurate fmatrix estimate the Frobenius norm works better. Default: Frobenius.


The documentation for this class was generated from the following file:

Generated on Sat Apr 10 15:27:19 2010 for LTI-Lib by Doxygen 1.6.1