LTI-Lib latest version v1.9 - last update 10 Apr 2010

lti::SOFM::parameters Class Reference

the parameters for the class SOFM More...

#include <ltiSOFM.h>

Inheritance diagram for lti::SOFM::parameters:
Inheritance graph
[legend]
Collaboration diagram for lti::SOFM::parameters:
Collaboration graph
[legend]

List of all members.

Public Types

enum  eInit { Random = 1, Linear = 2 }
enum  eMetric { L1 = 1, L2, Dot }

Public Member Functions

 parameters ()
 parameters (const parameters &other)
virtual ~parameters ()
const char * getTypeName () const
parameterscopy (const parameters &other)
parametersoperator= (const parameters &other)
virtual classifier::parametersclone () const
virtual bool write (ioHandler &handler, const bool complete=true) const
virtual bool read (ioHandler &handler, const bool complete=true)

Public Attributes

eInit initType
eMetric metricType
int stepsOrdering
double orderLearnMax
double orderLearnMin
double orderNeighborMax
double orderNeighborMin
double orderNeighborThresh
int stepsConvergence
double convergenceLearnMax
double convergenceLearnMin

Detailed Description

the parameters for the class SOFM


Member Enumeration Documentation

Possible types of initialization for the grid of neurons:.

Random
Grid points are selected randomly from the data.
Linear
The mean as well as the two maximum eigenvalues and corresponding eigenvectors of the data are calculted. Then the neurons in the grid are uniformly spread over the rectangle spanned by the eigenvectors and of the dimensions of the eigenvalues. Like this the grid is already ordered and neurons should be close to their final destination. Here, it is useful to set the parameter calculateSize to true
Enumerator:
Random 

choose initial values randomly from data

Linear 

take max eigenvalues and mean and distribute points

Different metrics can be used to determine the distance between an input vector and each neuron.

Enumerator:
L1 

use L1 norm

L2 

use L2 norm

Dot 

use dot product


Constructor & Destructor Documentation

lti::SOFM::parameters::parameters (  ) 

default constructor

Reimplemented from lti::unsupervisedClassifier::parameters.

Reimplemented in lti::SOFM2D::parameters.

lti::SOFM::parameters::parameters ( const parameters other  ) 

copy constructor

Parameters:
other the parameters object to be copied

Reimplemented from lti::unsupervisedClassifier::parameters.

Reimplemented in lti::SOFM2D::parameters.

virtual lti::SOFM::parameters::~parameters (  )  [virtual]

destructor

Reimplemented from lti::unsupervisedClassifier::parameters.

Reimplemented in lti::SOFM2D::parameters.


Member Function Documentation

virtual classifier::parameters* lti::SOFM::parameters::clone (  )  const [virtual]

returns a pointer to a clone of the parameters

Reimplemented from lti::classifier::parameters.

Reimplemented in lti::SOFM2D::parameters.

parameters& lti::SOFM::parameters::copy ( const parameters other  ) 

copy the contents of a parameters object

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

Reimplemented from lti::unsupervisedClassifier::parameters.

Reimplemented in lti::SOFM2D::parameters.

const char* lti::SOFM::parameters::getTypeName (  )  const [virtual]

returns name of this type

Reimplemented from lti::unsupervisedClassifier::parameters.

Reimplemented in lti::SOFM2D::parameters.

parameters& lti::SOFM::parameters::operator= ( const parameters other  ) 

copy the contents of a parameters object

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

Reimplemented from lti::unsupervisedClassifier::parameters.

Reimplemented in lti::SOFM2D::parameters.

virtual bool lti::SOFM::parameters::read ( ioHandler handler,
const bool  complete = true 
) [virtual]

read the parameters from the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::classifier::parameters.

Reimplemented in lti::SOFM2D::parameters.

virtual bool lti::SOFM::parameters::write ( ioHandler handler,
const bool  complete = true 
) const [virtual]

write the parameters in the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::classifier::parameters.

Reimplemented in lti::SOFM2D::parameters.


Member Data Documentation

Maximum value of learn-rate during convergence.

Minimum value of learn-rate during convergence.

type of initialization method used.

See eInit.

type of metric used.

See eMetric.

Maximum value of learn-rate during ordering.

Minimum value of learn-rate during ordering.

Maximum distance to the winner neuron during ordering.

The unit is in grid steps. E.g. a value of 1 would include (theoretically) the 8 neighbors, since a square window is assumed. You can change this by setting orderNeighborThresh to an appropriate value.

Minimum distance to the winner neuron during ordering.

The neighborhood stays like this for the convergence phase. This value should be rather low, typically 1. For values below 1 no neighborhood is created which will not work!

The minimum value the neighborhood function assumes (cut-off value).

This should be rather low. Since a Gaussian kernel is used this value steers the size of the kernel to be used. I.e. the bigger the value, the faster the training and the less precise. E.g. if for the current neighborhood size the Gaussian value is smaller than the threshold for the roof of the neighborhood value, the kernel size will be lower than the roof of the neighborhood size.

Number of epochs used for convergence in the training.

Number of epochs used for ordering in the training.


The documentation for this class was generated from the following file:

Generated on Sat Apr 10 15:26:59 2010 for LTI-Lib by Doxygen 1.6.1