LTI-Lib latest version v1.9 - last update 10 Apr 2010

lti::competitiveAgglomeration::parameters Class Reference

The parameters for the class competitiveAgglomeration. More...

#include <ltiCompetitiveAgglomeration.h>

List of all members.

Public Member Functions

 parameters ()
 parameters (const parameters &other)
 ~parameters ()
const char * getTypeName () const
parameterscopy (const parameters &other)
parametersoperator= (const parameters &other)
virtual classifier::parametersclone () const
virtual bool write (ioHandler &handler, const bool complete=true) const
virtual bool read (ioHandler &handler, const bool complete=true)

Public Attributes

double cardinalityFactor
double timeConstant
int initialNumberOfClusters
int initialIterations
double minimumCardinality
double fuzzifier
int maxIterations
double convergenceThreshold

Detailed Description

The parameters for the class competitiveAgglomeration.


Constructor & Destructor Documentation

lti::competitiveAgglomeration::parameters::parameters (  ) 

Default constructor.

lti::competitiveAgglomeration::parameters::parameters ( const parameters other  ) 

Copy constructor.

Parameters:
other the parameters object to be copied
lti::competitiveAgglomeration::parameters::~parameters (  ) 

Destructor.


Member Function Documentation

virtual classifier::parameters* lti::competitiveAgglomeration::parameters::clone (  )  const [virtual]

Returns a pointer to a clone of the parameters.

parameters& lti::competitiveAgglomeration::parameters::copy ( const parameters other  ) 

Copy the contents of a parameters object.

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object
const char* lti::competitiveAgglomeration::parameters::getTypeName (  )  const

Returns name of this type.

parameters& lti::competitiveAgglomeration::parameters::operator= ( const parameters other  ) 

Copy the contents of a parameters object.

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object
virtual bool lti::competitiveAgglomeration::parameters::read ( ioHandler handler,
const bool  complete = true 
) [virtual]

Read the parameters from the given ioHandler.

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful
virtual bool lti::competitiveAgglomeration::parameters::write ( ioHandler handler,
const bool  complete = true 
) const [virtual]

Write the parameters in the given ioHandler.

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Member Data Documentation

The cardinality factor defines the importance of merging nearby clusters relative to covering the data optimally.

Larger values will result in fewer clusters, with a value of 0.0 no cluster will be discarded, thus leading to the same result as the fuzzy C-Means algorithm. Default value is 5.0

The algorithm converges, when the centroids remain stable.

If the sum of the L2 distance of the relative movements of the centroids in one iteration is below the convergence threshold, the algorithm terminates. Default: 0.02

Bias the algorithm either towards hard clustering (nearby 1) or fuzzy clustering (bigger 1); this parameter must be bigger than 1.

Default is 2.0

The number of iterations to be used for fuzzy c-means pre-classification.

Default: 10.

The initial number of clusters must be larger than the expected optimal number of clusters.

Default is 20.

The maximum number of iterations serves as one of two convergence criteria, the other one being convergenceThreshold.

Default value is 100.

The cardinality describes the amount of data that is being covered by the cluster.

If the cardinality of a cluster drops below a given threshold, it will be discarded. The default value for this threshold is 5.0

As the cardinality factor relies heavily on the data, the distance measure and the number of clusters, a decay function is used that starts with the given cardinality factor and exponentially decreases the value with each iteration: exp(-iteration / timeConstant).

This should result in finding the optimal number of clusters faster. The default time constant is 10.0


The documentation for this class was generated from the following file:

Generated on Sat Apr 10 15:26:48 2010 for LTI-Lib by Doxygen 1.6.1