latest version v1.9 - last update 10 Apr 2010 |
The parameters for the class competitiveAgglomeration. More...
#include <ltiCompetitiveAgglomeration.h>
Public Member Functions | |
parameters () | |
parameters (const parameters &other) | |
~parameters () | |
const char * | getTypeName () const |
parameters & | copy (const parameters &other) |
parameters & | operator= (const parameters &other) |
virtual classifier::parameters * | clone () const |
virtual bool | write (ioHandler &handler, const bool complete=true) const |
virtual bool | read (ioHandler &handler, const bool complete=true) |
Public Attributes | |
double | cardinalityFactor |
double | timeConstant |
int | initialNumberOfClusters |
int | initialIterations |
double | minimumCardinality |
double | fuzzifier |
int | maxIterations |
double | convergenceThreshold |
The parameters for the class competitiveAgglomeration.
lti::competitiveAgglomeration::parameters::parameters | ( | ) |
Default constructor.
lti::competitiveAgglomeration::parameters::parameters | ( | const parameters & | other | ) |
Copy constructor.
other | the parameters object to be copied |
lti::competitiveAgglomeration::parameters::~parameters | ( | ) |
Destructor.
virtual classifier::parameters* lti::competitiveAgglomeration::parameters::clone | ( | ) | const [virtual] |
Returns a pointer to a clone of the parameters.
parameters& lti::competitiveAgglomeration::parameters::copy | ( | const parameters & | other | ) |
Copy the contents of a parameters object.
other | the parameters object to be copied |
const char* lti::competitiveAgglomeration::parameters::getTypeName | ( | ) | const |
Returns name of this type.
parameters& lti::competitiveAgglomeration::parameters::operator= | ( | const parameters & | other | ) |
Copy the contents of a parameters object.
other | the parameters object to be copied |
virtual bool lti::competitiveAgglomeration::parameters::read | ( | ioHandler & | handler, | |
const bool | complete = true | |||
) | [virtual] |
Read the parameters from the given ioHandler.
handler | the ioHandler to be used | |
complete | if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written. |
virtual bool lti::competitiveAgglomeration::parameters::write | ( | ioHandler & | handler, | |
const bool | complete = true | |||
) | const [virtual] |
Write the parameters in the given ioHandler.
handler | the ioHandler to be used | |
complete | if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written. |
The cardinality factor defines the importance of merging nearby clusters relative to covering the data optimally.
Larger values will result in fewer clusters, with a value of 0.0 no cluster will be discarded, thus leading to the same result as the fuzzy C-Means algorithm. Default value is 5.0
The algorithm converges, when the centroids remain stable.
If the sum of the L2 distance of the relative movements of the centroids in one iteration is below the convergence threshold, the algorithm terminates. Default: 0.02
Bias the algorithm either towards hard clustering (nearby 1) or fuzzy clustering (bigger 1); this parameter must be bigger than 1.
Default is 2.0
The number of iterations to be used for fuzzy c-means pre-classification.
Default: 10.
The initial number of clusters must be larger than the expected optimal number of clusters.
Default is 20.
The maximum number of iterations serves as one of two convergence criteria, the other one being convergenceThreshold.
Default value is 100.
The cardinality describes the amount of data that is being covered by the cluster.
If the cardinality of a cluster drops below a given threshold, it will be discarded. The default value for this threshold is 5.0
As the cardinality factor relies heavily on the data, the distance measure and the number of clusters, a decay function is used that starts with the given cardinality factor and exponentially decreases the value with each iteration: exp(-iteration / timeConstant).
This should result in finding the optimal number of clusters faster. The default time constant is 10.0