LTI-Lib latest version v1.9 - last update 10 Apr 2010

lti::sammonsMapping::parameters Class Reference

the parameters for the class sammonsMapping More...

#include <ltiSammonsMapping.h>

Inheritance diagram for lti::sammonsMapping::parameters:
Inheritance graph
[legend]
Collaboration diagram for lti::sammonsMapping::parameters:
Collaboration graph
[legend]

List of all members.

Public Types

enum  eInit { Random, PCA }
enum  eSearch { Steepest, Gradient, Momentum }

Public Member Functions

 parameters ()
 parameters (const parameters &other)
 ~parameters ()
const char * getTypeName () const
parameterscopy (const parameters &other)
parametersoperator= (const parameters &other)
virtual functor::parametersclone () const
virtual bool write (ioHandler &handler, const bool complete=true) const
virtual bool read (ioHandler &handler, const bool complete=true)

Public Attributes

int dimensions
int steps
double errorThresh
double alpha
eInit initType
dvector initBox
eSearch searchType
double mu

Detailed Description

the parameters for the class sammonsMapping


Member Enumeration Documentation

Initialization for the lower dimensional image space.

The Random version uses initBox for the size of the hyper cube the values are drawn from. The PCA version was suggested by Sammon for real-world problems. It uses the projection of the data points into the image space as initialization.

Enumerator:
Random 

choose initial values randomly from hyper cube initBox

PCA 

initial values are projection of the data by PCA

Different methods for seeking the minimum of the error:.

  • Steepest uses steepest descent, i.e. the gradient is divided by the norm of the second derivative.
  • Gradient uses regular gradient descent
  • Momentum uses gradient descent with momentum. The momentum is set by the parameter mu.
Enumerator:
Steepest 

steepest descent

Gradient 

gradient descent

Momentum 

gradient descent with momentum


Constructor & Destructor Documentation

lti::sammonsMapping::parameters::parameters (  ) 

default constructor

Reimplemented from lti::functor::parameters.

lti::sammonsMapping::parameters::parameters ( const parameters other  ) 

copy constructor

Parameters:
other the parameters object to be copied
lti::sammonsMapping::parameters::~parameters (  )  [virtual]

destructor

Reimplemented from lti::functor::parameters.


Member Function Documentation

virtual functor::parameters* lti::sammonsMapping::parameters::clone (  )  const [virtual]

returns a pointer to a clone of the parameters

Implements lti::functor::parameters.

parameters& lti::sammonsMapping::parameters::copy ( const parameters other  ) 

copy the contents of a parameters object

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object
const char* lti::sammonsMapping::parameters::getTypeName (  )  const [virtual]

returns name of this type

Reimplemented from lti::functor::parameters.

parameters& lti::sammonsMapping::parameters::operator= ( const parameters other  ) 

copy the contents of a parameters object

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object
virtual bool lti::sammonsMapping::parameters::read ( ioHandler handler,
const bool  complete = true 
) [virtual]

read the parameters from the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::functor::parameters.

virtual bool lti::sammonsMapping::parameters::write ( ioHandler handler,
const bool  complete = true 
) const [virtual]

write the parameters in the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::functor::parameters.


Member Data Documentation

A 'learn' rate or step size.

According to Kohonen it should be somewhere between 0.3 and 0.4. The default is 0.35

The number of dimensions of the output space.

Since Sammon's Mapping is mostly used for visualization the dafault is 2.

Threshold for the error of the mapping.

By default not used, thus 0.

Hyper cube random init values are chosen from in case initType is Random.

Each dimension ranges from 0 to the given value. Take care to choose the same dimesionality for initBox as the value of dimensions. Default is a unit cube.

Sets the initType.

Default is PCA.

The momentum.

Used if searchType is set to Momentum. Default is 0.1

Sets the type of search method used to minimize the error.

Default is Steepest.

Number of steps.

Default is 200.


The documentation for this class was generated from the following file:

Generated on Sat Apr 10 15:26:58 2010 for LTI-Lib by Doxygen 1.6.1