latest version v1.9 - last update 10 Apr 2010 |
parameters class for the RBF-Networks More...
#include <ltiRbf.h>
Public Types | |
enum | eLvqInit { LvqRand, LvqMaxDist } |
enum | eLvqTrainType { NO_LVQ = -1, LVQ1, OLVQ1, LVQ3, OLVQ3, LVQ4 } |
Public Member Functions | |
parameters () | |
parameters (const parameters &other) | |
virtual | ~parameters () |
const char * | getTypeName () const |
parameters & | copy (const parameters &other) |
parameters & | operator= (const parameters &other) |
virtual classifier::parameters * | clone () const |
virtual bool | write (ioHandler &handler, const bool complete=true) const |
virtual bool | read (ioHandler &handler, const bool complete=true) |
Public Attributes | |
classifier parameters | |
bool | doTrain2 |
int | nbPresentations1 |
int | nbPresentations2 |
int | nbHiddenNeurons |
double | learnRate1 |
double | learnRate2 |
double | learnFactor |
double | windowSize |
double | sigma |
double | sigmaFactor |
double | lambda |
double | high |
eNormType | norm |
eLvqInit | lvqInitType |
eLvqTrainType | lvqType1 |
eLvqTrainType | lvqType2 |
parameters class for the RBF-Networks
type to specify the kind of initialization for the networks
LvqRand |
random initialization of the vector code |
LvqMaxDist |
initialization with the maximum distance |
lti::rbf::parameters::parameters | ( | ) |
default constructor
Reimplemented from lti::classifier::parameters.
lti::rbf::parameters::parameters | ( | const parameters & | other | ) |
copy constructor
other | the parameters object to be copied |
virtual lti::rbf::parameters::~parameters | ( | ) | [virtual] |
destructor
Reimplemented from lti::classifier::parameters.
virtual classifier::parameters* lti::rbf::parameters::clone | ( | ) | const [virtual] |
returns a pointer to a clone of the parameters
Reimplemented from lti::classifier::parameters.
parameters& lti::rbf::parameters::copy | ( | const parameters & | other | ) |
copy the contents of a parameters object
other | the parameters object to be copied |
Referenced by operator=().
const char* lti::rbf::parameters::getTypeName | ( | ) | const [virtual] |
returns name of this type
Reimplemented from lti::classifier::parameters.
parameters& lti::rbf::parameters::operator= | ( | const parameters & | other | ) | [inline] |
Alias for "copy".
other | the parameters object to be copied |
References copy().
virtual bool lti::rbf::parameters::read | ( | ioHandler & | handler, | |
const bool | complete = true | |||
) | [virtual] |
read the parameters from the given ioHandler
handler | the ioHandler to be used | |
complete | if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written. |
Reimplemented from lti::classifier::parameters.
virtual bool lti::rbf::parameters::write | ( | ioHandler & | handler, | |
const bool | complete = true | |||
) | const [virtual] |
write the parameters in the given ioHandler
handler | the ioHandler to be used | |
complete | if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written. |
Reimplemented from lti::classifier::parameters.
trainNewNet
Default value: false convertNet Default value: false doTrain2 Default value: false
double lti::rbf::parameters::high |
this factor determines the value of the sigmoid function that will be used as threshold for a correct classification.
Default value: 0.99
double lti::rbf::parameters::lambda |
lambda
Default value: 0.0
learnFactor
Default value: 0.3
learnRate1
Default value: 0.3
learnRate2
Default value: 0.1
lvqInitType
Default value: rbf::parameters::LvqMaxDist
specify the type for the first LVQ training (usually LVQ1 or OLVQ1)
Default value: OLVQ1
specify the type for the second LVQ training (usually LVQ3 or OLVQ3)
Default value: OLVQ3
nbHiddenNeurons
Default value: 1
loadNet
Default value: true generate statistics? Default value: false Save/Load in binary mode Default value: true Save/Load in ASCII mode Default value: false convert binary file to ascii file Default value: true noObjectProbs Default value: false classifyStat Default value: true mseStat Default value: false mseSave Default value: false firstBestSave Default value: false threeBestSave Default value: true include the training set in the pattern set for the training statistics Default value: false nbPresentations1 Default value: 0
nbPresentations2
Default value: 20
norm
Default value: L2distance
double lti::rbf::parameters::sigma |
sigma
Default value: 0.0
sigmaFactor
Default value: 1.6
windowSize
Default value: 0.2