LTI-Lib latest version v1.9 - last update 10 Apr 2010

lti::rbf::parameters Class Reference

parameters class for the RBF-Networks More...

#include <ltiRbf.h>

Inheritance diagram for lti::rbf::parameters:
Inheritance graph
[legend]
Collaboration diagram for lti::rbf::parameters:
Collaboration graph
[legend]

List of all members.

Public Types

enum  eLvqInit { LvqRand, LvqMaxDist }
enum  eLvqTrainType {
  NO_LVQ = -1, LVQ1, OLVQ1, LVQ3,
  OLVQ3, LVQ4
}

Public Member Functions

 parameters ()
 parameters (const parameters &other)
virtual ~parameters ()
const char * getTypeName () const
parameterscopy (const parameters &other)
parametersoperator= (const parameters &other)
virtual classifier::parametersclone () const
virtual bool write (ioHandler &handler, const bool complete=true) const
virtual bool read (ioHandler &handler, const bool complete=true)

Public Attributes

classifier parameters



bool doTrain2
int nbPresentations1
int nbPresentations2
int nbHiddenNeurons
double learnRate1
double learnRate2
double learnFactor
double windowSize
double sigma
double sigmaFactor
double lambda
double high
eNormType norm
eLvqInit lvqInitType
eLvqTrainType lvqType1
eLvqTrainType lvqType2

Detailed Description

parameters class for the RBF-Networks


Member Enumeration Documentation

type to specify the kind of initialization for the networks

Enumerator:
LvqRand 

random initialization of the vector code

LvqMaxDist 

initialization with the maximum distance

The LVQ training algorithm.

Enumerator:
NO_LVQ 

do not use LVQ

LVQ1 

use LVQ1

OLVQ1 

use OLVQ1

LVQ3 

use LVQ3

OLVQ3 

use OLVQ3

LVQ4 

use LVQ4


Constructor & Destructor Documentation

lti::rbf::parameters::parameters (  ) 

default constructor

Reimplemented from lti::classifier::parameters.

lti::rbf::parameters::parameters ( const parameters other  ) 

copy constructor

Parameters:
other the parameters object to be copied
virtual lti::rbf::parameters::~parameters (  )  [virtual]

destructor

Reimplemented from lti::classifier::parameters.


Member Function Documentation

virtual classifier::parameters* lti::rbf::parameters::clone (  )  const [virtual]

returns a pointer to a clone of the parameters

Reimplemented from lti::classifier::parameters.

parameters& lti::rbf::parameters::copy ( const parameters other  ) 

copy the contents of a parameters object

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

Referenced by operator=().

const char* lti::rbf::parameters::getTypeName (  )  const [virtual]

returns name of this type

Reimplemented from lti::classifier::parameters.

parameters& lti::rbf::parameters::operator= ( const parameters other  )  [inline]

Alias for "copy".

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

References copy().

virtual bool lti::rbf::parameters::read ( ioHandler handler,
const bool  complete = true 
) [virtual]

read the parameters from the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::classifier::parameters.

virtual bool lti::rbf::parameters::write ( ioHandler handler,
const bool  complete = true 
) const [virtual]

write the parameters in the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::classifier::parameters.


Member Data Documentation

trainNewNet

Default value: false convertNet Default value: false doTrain2 Default value: false

this factor determines the value of the sigmoid function that will be used as threshold for a correct classification.

Default value: 0.99

lambda

Default value: 0.0

learnFactor

Default value: 0.3

learnRate1

Default value: 0.3

learnRate2

Default value: 0.1

lvqInitType

Default value: rbf::parameters::LvqMaxDist

specify the type for the first LVQ training (usually LVQ1 or OLVQ1)

Default value: OLVQ1

specify the type for the second LVQ training (usually LVQ3 or OLVQ3)

Default value: OLVQ3

nbHiddenNeurons

Default value: 1

loadNet

Default value: true generate statistics? Default value: false Save/Load in binary mode Default value: true Save/Load in ASCII mode Default value: false convert binary file to ascii file Default value: true noObjectProbs Default value: false classifyStat Default value: true mseStat Default value: false mseSave Default value: false firstBestSave Default value: false threeBestSave Default value: true include the training set in the pattern set for the training statistics Default value: false nbPresentations1 Default value: 0

nbPresentations2

Default value: 20

norm

Default value: L2distance

sigma

Default value: 0.0

sigmaFactor

Default value: 1.6

windowSize

Default value: 0.2


The documentation for this class was generated from the following file:

Generated on Sat Apr 10 15:26:57 2010 for LTI-Lib by Doxygen 1.6.1