latest version v1.9 - last update 10 Apr 2010 |
This class implements a multivariate decision. More...
#include <ltiCrispDecisionTree.h>
Public Member Functions | |
multivariateCrispDecisionFunction () | |
multivariateCrispDecisionFunction (const dvector &w, const double &thresh) | |
multivariateCrispDecisionFunction (const multivariateCrispDecisionFunction &other) | |
~multivariateCrispDecisionFunction () | |
const char * | getTypeName () const |
multivariateCrispDecisionFunction & | copy (const multivariateCrispDecisionFunction &other) |
multivariateCrispDecisionFunction & | operator= (const multivariateCrispDecisionFunction &other) |
virtual crispDecisionFunction * | clone () const |
virtual bool | apply (const dvector &data) const |
void | setCondition (const dvector &w, const double &thresh) |
virtual bool | write (ioHandler &handler, const bool complete=true) const |
virtual bool | read (ioHandler &handler, const bool complete=true) |
Protected Attributes | |
dvector | weights |
double | threshold |
This class implements a multivariate decision.
The apply method is true, if the following condition is met.
with the data, a weighting vector and the threshold.
Thus, each node performs an arbitrary linear seperation of the remaining feature space.
lti::crispDecisionTree::multivariateCrispDecisionFunction::multivariateCrispDecisionFunction | ( | ) |
default constructor
lti::crispDecisionTree::multivariateCrispDecisionFunction::multivariateCrispDecisionFunction | ( | const dvector & | w, | |
const double & | thresh | |||
) |
New decision function with the given parameters.
w | the weighting vector for the data. | |
thresh | the threshold for the weighted sum |
lti::crispDecisionTree::multivariateCrispDecisionFunction::multivariateCrispDecisionFunction | ( | const multivariateCrispDecisionFunction & | other | ) |
copy constructor
other | the multivariateCrispDecisionFunction object to be copied |
lti::crispDecisionTree::multivariateCrispDecisionFunction::~multivariateCrispDecisionFunction | ( | ) |
destructor
virtual bool lti::crispDecisionTree::multivariateCrispDecisionFunction::apply | ( | const dvector & | data | ) | const [virtual] |
Evaluate the condition implemented in the cdf.
data | value to be evaluated |
Implements lti::crispDecisionTree::crispDecisionFunction.
virtual crispDecisionFunction* lti::crispDecisionTree::multivariateCrispDecisionFunction::clone | ( | ) | const [virtual] |
returns a pointer to a clone of the multivariateCrispDecisionFunction
Implements lti::crispDecisionTree::crispDecisionFunction.
multivariateCrispDecisionFunction& lti::crispDecisionTree::multivariateCrispDecisionFunction::copy | ( | const multivariateCrispDecisionFunction & | other | ) |
copy the contents of a multivariateCrispDecisionFunction object
other | the multivariateCrispDecisionFunction object to be copied |
Reimplemented from lti::crispDecisionTree::crispDecisionFunction.
const char* lti::crispDecisionTree::multivariateCrispDecisionFunction::getTypeName | ( | ) | const [virtual] |
returns name of this type
Reimplemented from lti::crispDecisionTree::crispDecisionFunction.
multivariateCrispDecisionFunction& lti::crispDecisionTree::multivariateCrispDecisionFunction::operator= | ( | const multivariateCrispDecisionFunction & | other | ) |
copy the contents of a multivariateCrispDecisionFunction object
other | the multivariateCrispDecisionFunction object to be copied |
Reimplemented from lti::crispDecisionTree::crispDecisionFunction.
virtual bool lti::crispDecisionTree::multivariateCrispDecisionFunction::read | ( | ioHandler & | handler, | |
const bool | complete = true | |||
) | [virtual] |
read the multivariateCrispDecisionFunction from the given ioHandler
handler | the ioHandler to be used | |
complete | if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written. |
Reimplemented from lti::crispDecisionTree::crispDecisionFunction.
void lti::crispDecisionTree::multivariateCrispDecisionFunction::setCondition | ( | const dvector & | w, | |
const double & | thresh | |||
) |
Sets the condition to be tested.
w | the weighting vector for the data. | |
thresh | the threshold for the weightes sum |
virtual bool lti::crispDecisionTree::multivariateCrispDecisionFunction::write | ( | ioHandler & | handler, | |
const bool | complete = true | |||
) | const [virtual] |
write the multivariateCrispDecisionFunction in the given ioHandler
handler | the ioHandler to be used | |
complete | if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written. |
Reimplemented from lti::crispDecisionTree::crispDecisionFunction.
double lti::crispDecisionTree::multivariateCrispDecisionFunction::threshold [protected] |
Threshold against which the data is tested in the given dimension.
the weighting vector