latest version v1.9 - last update 10 Apr 2010 |
00001 /* 00002 * Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006 00003 * Lehrstuhl fuer Technische Informatik, RWTH-Aachen, Germany 00004 * 00005 * This file is part of the LTI-Computer Vision Library (LTI-Lib) 00006 * 00007 * The LTI-Lib is free software; you can redistribute it and/or 00008 * modify it under the terms of the GNU Lesser General Public License (LGPL) 00009 * as published by the Free Software Foundation; either version 2.1 of 00010 * the License, or (at your option) any later version. 00011 * 00012 * The LTI-Lib is distributed in the hope that it will be 00013 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 00014 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 * GNU Lesser General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU Lesser General Public 00018 * License along with the LTI-Lib; see the file LICENSE. If 00019 * not, write to the Free Software Foundation, Inc., 59 Temple Place - 00020 * Suite 330, Boston, MA 02111-1307, USA. 00021 */ 00022 00023 00024 /*---------------------------------------------------------------- 00025 * project ....: LTI Digital Image/Signal Processing Library 00026 * file .......: ltiShiftInvariance.h 00027 * authors ....: Pablo Alvarado 00028 * organization: LTI, RWTH Aachen 00029 * creation ...: 31.5.2001 00030 * revisions ..: $Id: ltiShiftInvariance.h,v 1.10 2007/01/10 02:26:06 alvarado Exp $ 00031 */ 00032 00033 #ifndef _LTI_SHIFT_INVARIANCE_H_ 00034 #define _LTI_SHIFT_INVARIANCE_H_ 00035 00036 #include "ltiImage.h" 00037 #include "ltiVector.h" 00038 00039 #include "ltiGlobalFeatureExtractor.h" 00040 00041 namespace lti { 00042 00043 /** 00044 * This functor takes a vector, which is supposed to be periodic, and 00045 * generates a second "normalized" shifted one. It uses different modi. 00046 * 00047 * This first one uses the property of the fourier transform to represent a 00048 * vector "shift" as the addition of a factor k*w (w=2*Pi*f) to the 00049 * phase of its representation in the frecuency space. To get rid 00050 * of this term, the phase is twice derived, and the result is 00051 * subracted from the first order derivative. This resulting vector 00052 * should represent a constant value k, but due to the phase 00053 * "discontinuities" is not the case. The average of the vector 00054 * values which lie in a given tolerance interval will be used to 00055 * calculate the shift. 00056 * 00057 * This hasn't beed documented anywere 00058 * 00059 * The second one calculates and centers the first momentum of the 00060 * cyclic vector at the position 0 00061 */ 00062 class shiftInvariance : public globalFeatureExtractor { 00063 public: 00064 /** 00065 * the parameters for the class shiftInvariance 00066 */ 00067 class parameters : public globalFeatureExtractor::parameters { 00068 public: 00069 /** 00070 * default constructor 00071 */ 00072 parameters(); 00073 00074 /** 00075 * copy constructor 00076 * @param other the parameters object to be copied 00077 */ 00078 parameters(const parameters& other); 00079 00080 /** 00081 * destructor 00082 */ 00083 ~parameters(); 00084 00085 /** 00086 * returns name of this type 00087 */ 00088 const char* getTypeName() const; 00089 00090 /** 00091 * copy the contents of a parameters object 00092 * @param other the parameters object to be copied 00093 * @return a reference to this parameters object 00094 */ 00095 parameters& copy(const parameters& other); 00096 00097 /** 00098 * copy the contents of a parameters object 00099 * @param other the parameters object to be copied 00100 * @return a reference to this parameters object 00101 */ 00102 parameters& operator=(const parameters& other); 00103 00104 00105 /** 00106 * returns a pointer to a clone of the parameters 00107 */ 00108 virtual functor::parameters* clone() const; 00109 00110 /** 00111 * write the parameters in the given ioHandler 00112 * @param handler the ioHandler to be used 00113 * @param complete if true (the default) the enclosing begin/end will 00114 * be also written, otherwise only the data block will be written. 00115 * @return true if write was successful 00116 */ 00117 virtual bool write(ioHandler& handler,const bool complete=true) const; 00118 00119 /** 00120 * write the parameters in the given ioHandler 00121 * @param handler the ioHandler to be used 00122 * @param complete if true (the default) the enclosing begin/end will 00123 * be also written, otherwise only the data block will be written. 00124 * @return true if write was successful 00125 */ 00126 virtual bool read(ioHandler& handler,const bool complete=true); 00127 00128 # ifdef _LTI_MSC_6 00129 /** 00130 * this function is required by MSVC only, as a workaround for a 00131 * very awful bug, which exists since MSVC V.4.0, and still by 00132 * V.6.0 with all bugfixes (so called "service packs") remains 00133 * there... This method is also public due to another bug, so please 00134 * NEVER EVER call this method directly: use read() instead 00135 */ 00136 bool readMS(ioHandler& handler,const bool complete=true); 00137 00138 /** 00139 * this function is required by MSVC only, as a workaround for a 00140 * very awful bug, which exists since MSVC V.4.0, and still by 00141 * V.6.0 with all bugfixes (so called "service packs") remains 00142 * there... This method is also public due to another bug, so please 00143 * NEVER EVER call this method directly: use write() instead 00144 */ 00145 bool writeMS(ioHandler& handler,const bool complete=true) const; 00146 # endif 00147 00148 // ------------------------------------------------ 00149 // the parameters 00150 // ------------------------------------------------ 00151 00152 /** 00153 * Shift invariance mode 00154 */ 00155 enum eMode { 00156 Fourier, /**< Try to eliminate the phase term caused by signal 00157 shift */ 00158 Momentum /**< Shift the signal in a way that the first cyclic momentum 00159 is position at 0 */ 00160 }; 00161 00162 /** 00163 * the mode to be used. 00164 * Default value: Momentum 00165 */ 00166 eMode mode; 00167 00168 }; 00169 00170 /** 00171 * default constructor 00172 */ 00173 shiftInvariance(); 00174 00175 /** 00176 * copy constructor 00177 * @param other the object to be copied 00178 */ 00179 shiftInvariance(const shiftInvariance& other); 00180 00181 /** 00182 * destructor 00183 */ 00184 virtual ~shiftInvariance(); 00185 00186 /** 00187 * returns the name of this type ("shiftInvariance") 00188 */ 00189 virtual const char* getTypeName() const; 00190 00191 //TODO: comment your apply methods! 00192 00193 /** 00194 * operates on the given %parameter. 00195 * @param srcdest dvector with the source data. The result 00196 * will be left here too. 00197 * @return true if apply successful or false otherwise. 00198 */ 00199 bool apply(dvector& srcdest) const; 00200 00201 /** 00202 * operates on a copy of the given %parameters. 00203 * @param src dvector with the source data. 00204 * @param dest dvector where the result will be left. 00205 * @return true if apply successful or false otherwise. 00206 */ 00207 bool apply(const dvector& src,dvector& dest) const; 00208 00209 /** 00210 * operates on a copy of the given %parameters. 00211 * @param src dvector with the source data. 00212 * @param dest dvector where the result will be left. 00213 * @param shft will contain the number of elements the vector was 00214 * shifted 00215 * @return true if apply successful or false otherwise. 00216 */ 00217 bool apply(const dvector& src,dvector& dest,int& shft) const; 00218 00219 /** 00220 * copy data of "other" functor. 00221 * @param other the functor to be copied 00222 * @return a reference to this functor object 00223 */ 00224 shiftInvariance& copy(const shiftInvariance& other); 00225 00226 /** 00227 * returns a pointer to a clone of this functor. 00228 */ 00229 virtual functor* clone() const; 00230 00231 /** 00232 * returns used parameters 00233 */ 00234 const parameters& getParameters() const; 00235 00236 private: 00237 /** 00238 * returns the angle normalized to the interval 0..2Pi 00239 */ 00240 double normAngle(const double& x) const; 00241 00242 /** 00243 * operates on a copy of the given %parameters. 00244 * @param src dvector with the source data. 00245 * @param dest dvector where the result will be left. 00246 * @return true if apply successful or false otherwise. 00247 * 00248 * The derivatives of first and second order will be computed directly 00249 * from the phase of the fourier transform of the source. 00250 */ 00251 bool direct(const dvector& src,dvector& dest,int& shft) const; 00252 00253 /** 00254 * operates on a copy of the given %parameters. 00255 * @param src dvector with the source data. 00256 * @param dest dvector where the result will be left. 00257 * @return true if apply successful or false otherwise. 00258 * 00259 * Shift will be calculated based on the first momentum. 00260 */ 00261 bool momentum(const dvector& src,dvector& dest,int& shft) const; 00262 00263 /** 00264 * operates on a copy of the given %parameters. 00265 * @param src dvector with the source data. 00266 * @param dest dvector where the result will be left. 00267 * @return true if apply successful or false otherwise. 00268 * 00269 * The derivatives of first and second order will be computed indirectly 00270 * through the cosine and sine of the phase. There are still some 00271 * theoretical problems with this method, but it works fine. 00272 * 00273 * This is much slower than the direct method, and it requires much more 00274 * memory. 00275 * 00276 */ 00277 bool arctan(const dvector& src,dvector& dest,int& shft) const; 00278 00279 /** 00280 * consider discontinuities in the magnitud to interpolate 00281 * missing phase elements 00282 */ 00283 bool fixArg(const dvector& mag,dvector& arg) const; 00284 00285 /** 00286 * cyclic shift of the given vector 00287 */ 00288 bool shift(const dvector& in,const int& shft,dvector& out) const; 00289 }; 00290 } 00291 00292 #endif