LTI-Lib latest version v1.9 - last update 10 Apr 2010

lti::colorEdgesGS::parameters Class Reference

the parameters for the class colorEdgesGS More...

#include <ltiColorEdgesGS.h>

Inheritance diagram for lti::colorEdgesGS::parameters:
Inheritance graph
[legend]
Collaboration diagram for lti::colorEdgesGS::parameters:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 parameters ()
 parameters (const parameters &other)
 ~parameters ()
const char * getTypeName () const
parameterscopy (const parameters &other)
parametersoperator= (const parameters &other)
virtual functor::parametersclone () const
virtual bool write (ioHandler &handler, const bool complete=true) const
virtual bool read (ioHandler &handler, const bool complete=true)
bool measureNoise (const image &img, const rectangle &window=rectangle(0, 0, std::numeric_limits< int >::max(), std::numeric_limits< int >::max()))

Public Attributes

ubyte shadowEdgeValue
ubyte highlightEdgeValue
trgbPixel< float > noiseStdDeviation
gradientFunctor::parameters gradient
float uncertaintyFactor

Detailed Description

the parameters for the class colorEdgesGS


Constructor & Destructor Documentation

lti::colorEdgesGS::parameters::parameters (  ) 

default constructor

Reimplemented from lti::edgeDetector::parameters.

lti::colorEdgesGS::parameters::parameters ( const parameters other  ) 

copy constructor

Parameters:
other the parameters object to be copied

Reimplemented from lti::edgeDetector::parameters.

lti::colorEdgesGS::parameters::~parameters (  )  [virtual]

destructor

Reimplemented from lti::edgeDetector::parameters.


Member Function Documentation

virtual functor::parameters* lti::colorEdgesGS::parameters::clone (  )  const [virtual]

returns a pointer to a clone of the parameters

Reimplemented from lti::edgeDetector::parameters.

parameters& lti::colorEdgesGS::parameters::copy ( const parameters other  ) 

copy the contents of a parameters object

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

Reimplemented from lti::edgeDetector::parameters.

const char* lti::colorEdgesGS::parameters::getTypeName (  )  const [virtual]

returns name of this type

Reimplemented from lti::edgeDetector::parameters.

bool lti::colorEdgesGS::parameters::measureNoise ( const image img,
const rectangle window = rectangle(0, 0, std::numeric_limits< int >::max(), std::numeric_limits< int >::max()) 
)

Assuming the given image corresponds to a homogeneous color patch, the noise standard deviation will be computed as the standard deviation for each channel.

The result will be left in the attribute noiseStdDeviation.

Parameters:
img image containing a homogeneous color patch.
window region of the image to be considered.
Returns:
true if successful, false otherwise.
parameters& lti::colorEdgesGS::parameters::operator= ( const parameters other  ) 

copy the contents of a parameters object

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

Reimplemented from lti::edgeDetector::parameters.

virtual bool lti::colorEdgesGS::parameters::read ( ioHandler handler,
const bool  complete = true 
) [virtual]

read the parameters from the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::edgeDetector::parameters.

virtual bool lti::colorEdgesGS::parameters::write ( ioHandler handler,
const bool  complete = true 
) const [virtual]

write the parameters in the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::edgeDetector::parameters.


Member Data Documentation

Parameters for the gradient functor used to compute single channel gradients.

The parameters used are mostly the default ones, but the mode is always set to cartesian, since that is the mode required by this functor, and the default kernel is the Sobel.

Value used to mark the highlight edges.

Default value 192

The algorithm of Gevers and Stokman requires the standard deviation for the noise at each channel.

You can compute this standard deviation with the methods of this parameter class measureNoise().

The noise standard deviation is computed for the range [0,255].

Default value: trgbPixel<float>(1.5f,1.5f,1.5f)

Value used to mark the shadow edges.

Default value 128

Multiplicative factor for the uncertainty.

The gradient value must surpass this factor times the uncertainty in order to be considered as edge.

Default value: 3.0


The documentation for this class was generated from the following file:

Generated on Sat Apr 10 15:27:08 2010 for LTI-Lib by Doxygen 1.6.1