LTI-Lib latest version v1.9 - last update 10 Apr 2010

lti::cannyEdges::parameters Class Reference

the parameters for the class cannyEdges More...

#include <ltiCannyEdges.h>

Inheritance diagram for lti::cannyEdges::parameters:
Inheritance graph
[legend]
Collaboration diagram for lti::cannyEdges::parameters:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 parameters ()
 parameters (const parameters &other)
 ~parameters ()
const char * getTypeName () const
parameterscopy (const parameters &other)
parametersoperator= (const parameters &other)
virtual functor::parametersclone () const
virtual bool write (ioHandler &handler, const bool complete=true) const
virtual bool read (ioHandler &handler, const bool complete=true)

Public Attributes

float variance
int kernelSize
float thresholdMin
float thresholdMax
colorContrastGradient::parameters gradientParameters

Detailed Description

the parameters for the class cannyEdges


Constructor & Destructor Documentation

lti::cannyEdges::parameters::parameters (  ) 

default constructor

Reimplemented from lti::edgeDetector::parameters.

lti::cannyEdges::parameters::parameters ( const parameters other  ) 

copy constructor

Parameters:
other the parameters object to be copied

Reimplemented from lti::edgeDetector::parameters.

lti::cannyEdges::parameters::~parameters (  )  [virtual]

destructor

Reimplemented from lti::edgeDetector::parameters.


Member Function Documentation

virtual functor::parameters* lti::cannyEdges::parameters::clone (  )  const [virtual]

returns a pointer to a clone of the parameters

Reimplemented from lti::edgeDetector::parameters.

parameters& lti::cannyEdges::parameters::copy ( const parameters other  ) 

copy the contents of a parameters object

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

Reimplemented from lti::edgeDetector::parameters.

const char* lti::cannyEdges::parameters::getTypeName (  )  const [virtual]

returns name of this type

Reimplemented from lti::edgeDetector::parameters.

parameters& lti::cannyEdges::parameters::operator= ( const parameters other  ) 

copy the contents of a parameters object

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

Reimplemented from lti::edgeDetector::parameters.

virtual bool lti::cannyEdges::parameters::read ( ioHandler handler,
const bool  complete = true 
) [virtual]

read the parameters from the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::edgeDetector::parameters.

virtual bool lti::cannyEdges::parameters::write ( ioHandler handler,
const bool  complete = true 
) const [virtual]

write the parameters in the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::edgeDetector::parameters.


Member Data Documentation

Parameters for gradient computation.

To provide more alternatives to the gradient computation, the lti::gradientFunctor is used. Here you can select all options available for that functor.

The default behaviour is to use the lti::gradientFunctor::parameters::Difference kernel, which is the fastest but also the less precise. You can use the optimal kernels if you require a more stable orientation detection.

Default value: Difference mode (fast gradient computation)

See also:
lti::gradientFunctor

Size of the Gaussian kernel used to smooth the image (see also variance).

Set to zero if you don't want any smoothing.

Default value: 7

If an edge response is higher than this value, those pixels will be definite an edge.

This value MUST be between 0 and 1.0.

Please note that the older value range between 0 and 255 is deprecated.

Default Value: 0.04f;

If a pixel is detected as part of an edge (a response higher than thresholdMax), its neighbors are consider also edges if their values are higher than the given percentage of thresholdMax (i.e.

higher than thresholdMax*thresholdMin)

This value must be between 0.0 and 1.0

Default Value: 0.5

Variance for the Gaussian to smooth the image.

(see also gaussKernel1D<ubyte>::gaussKernel1D())

Default value: 1.0


The documentation for this class was generated from the following file:

Generated on Sat Apr 10 15:27:05 2010 for LTI-Lib by Doxygen 1.6.1