LTI-Lib latest version v1.9 - last update 10 Apr 2010

lti::hmmClassifier::parameters Class Reference

the parameters for the class hmmClassifier More...

#include <ltiHmmClassifier.h>

Inheritance diagram for lti::hmmClassifier::parameters:
Inheritance graph
[legend]
Collaboration diagram for lti::hmmClassifier::parameters:
Collaboration graph
[legend]

List of all members.

Public Types

enum  mappingType { exponential, linear, none }

Public Member Functions

 parameters ()
 parameters (const parameters &other)
virtual ~parameters ()
const char * getTypeName () const
parameterscopy (const parameters &other)
parametersoperator= (const parameters &other)
virtual classifier::parametersclone () const
virtual bool write (ioHandler &handler, const bool complete=true) const
virtual bool read (ioHandler &handler, const bool complete=true)

Public Attributes

hmmTrainer::parameters hmmTrainingParameters
hiddenMarkovModel defaultModel
mappingType mappingFunction

Detailed Description

the parameters for the class hmmClassifier


Member Enumeration Documentation

Mapping type used for scores.

Currently exponential, linear and none are available.

exponential
$value = \frac{1.0}{score - lowestScore + 1.0}$
linear
$value = \frac{highestscore-score}{highestScore-lowestScore}$
none
$value = score$
Enumerator:
exponential 

choose exponential mapping

linear 

choose linear mapping

none 

choose no mapping


Constructor & Destructor Documentation

lti::hmmClassifier::parameters::parameters (  ) 

default constructor

Reimplemented from lti::classifier::parameters.

Reimplemented in lti::hmmOnlineClassifier::parameters.

lti::hmmClassifier::parameters::parameters ( const parameters other  ) 

copy constructor

Parameters:
other the parameters object to be copied

Reimplemented in lti::hmmOnlineClassifier::parameters.

virtual lti::hmmClassifier::parameters::~parameters (  )  [virtual]

destructor

Reimplemented from lti::classifier::parameters.

Reimplemented in lti::hmmOnlineClassifier::parameters.


Member Function Documentation

virtual classifier::parameters* lti::hmmClassifier::parameters::clone (  )  const [virtual]

returns a pointer to a clone of the parameters

Reimplemented from lti::classifier::parameters.

Reimplemented in lti::hmmOnlineClassifier::parameters.

parameters& lti::hmmClassifier::parameters::copy ( const parameters other  ) 

copy the contents of a parameters object

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

Reimplemented in lti::hmmOnlineClassifier::parameters.

const char* lti::hmmClassifier::parameters::getTypeName (  )  const [virtual]

returns name of this type

Reimplemented from lti::classifier::parameters.

Reimplemented in lti::hmmOnlineClassifier::parameters.

parameters& lti::hmmClassifier::parameters::operator= ( const parameters other  ) 

copy the contents of a parameters object

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

Reimplemented in lti::hmmOnlineClassifier::parameters.

virtual bool lti::hmmClassifier::parameters::read ( ioHandler handler,
const bool  complete = true 
) [virtual]

read the parameters from the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::classifier::parameters.

Reimplemented in lti::hmmOnlineClassifier::parameters.

virtual bool lti::hmmClassifier::parameters::write ( ioHandler handler,
const bool  complete = true 
) const [virtual]

write the parameters in the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::classifier::parameters.

Reimplemented in lti::hmmOnlineClassifier::parameters.


Member Data Documentation

Default hidden markov model used for the training process.

This can be useful for modifying attributes such as emissionScoreWeight. Changing these parameters only affects the following training processes, existing models are left untouched.

Parameters used for the training process.

Changing these parameters only affects the following training processes.

Specifies the mapping function to be used.

default: exponentialMapping


The documentation for this class was generated from the following file:

Generated on Sat Apr 10 15:26:51 2010 for LTI-Lib by Doxygen 1.6.1