LTI-Lib latest version v1.9 - last update 10 Apr 2010

lti::adaptiveKMeans::parameters Class Reference

the parameters for the class adaptiveKMeans More...

#include <ltiAdaptiveKMeans.h>

Inheritance diagram for lti::adaptiveKMeans::parameters:
Inheritance graph
[legend]
Collaboration diagram for lti::adaptiveKMeans::parameters:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 parameters ()
 parameters (const parameters &other)
virtual ~parameters ()
const char * getTypeName () const
parameterscopy (const parameters &other)
parametersoperator= (const parameters &other)
virtual classifier::parametersclone () const
virtual bool write (ioHandler &handler, const bool complete=true) const
virtual bool read (ioHandler &handler, const bool complete=true)

Public Attributes

double minNeighborhood
double maxNeighborhood
double learnRate
int nbNeighborhoods
double minNumberOfPoints
int nbClusters
bool detectNeighborhood
int maxIterations
double maxDistance

Detailed Description

the parameters for the class adaptiveKMeans


Constructor & Destructor Documentation

lti::adaptiveKMeans::parameters::parameters (  ) 

default constructor

Reimplemented from lti::classifier::parameters.

lti::adaptiveKMeans::parameters::parameters ( const parameters other  ) 

copy constructor

Parameters:
other the parameters object to be copied

Reimplemented from lti::classifier::parameters.

virtual lti::adaptiveKMeans::parameters::~parameters (  )  [virtual]

destructor

Reimplemented from lti::classifier::parameters.


Member Function Documentation

virtual classifier::parameters* lti::adaptiveKMeans::parameters::clone (  )  const [virtual]

returns a pointer to a clone of the parameters

Reimplemented from lti::classifier::parameters.

parameters& lti::adaptiveKMeans::parameters::copy ( const parameters other  ) 

copy the contents of a parameters object

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

Reimplemented from lti::classifier::parameters.

const char* lti::adaptiveKMeans::parameters::getTypeName (  )  const [virtual]

returns name of this type

Reimplemented from lti::classifier::parameters.

parameters& lti::adaptiveKMeans::parameters::operator= ( const parameters other  ) 

copy the contents of a parameters object

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

Reimplemented from lti::classifier::parameters.

virtual bool lti::adaptiveKMeans::parameters::read ( ioHandler handler,
const bool  complete = true 
) [virtual]

read the parameters from the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::classifier::parameters.

virtual bool lti::adaptiveKMeans::parameters::write ( ioHandler handler,
const bool  complete = true 
) const [virtual]

write the parameters in the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::classifier::parameters.


Member Data Documentation

if true the parameters minNeighborhood, maxNeighborhood, increment and maxDistance will be automaticly be detected

the learn rate

if every component of the centroids moves less than this parameter the centroids are stable

maximum number of iterations before the next neighborhood considered

maximum neighborhood

minimum neighborhood

minimum number of points in one cluster.

If a cluster has less than this the cluster will be deleted

number of clusters to start with

the increment of the neighborhood


The documentation for this class was generated from the following file:

Generated on Sat Apr 10 15:26:45 2010 for LTI-Lib by Doxygen 1.6.1