LTI-Lib latest version v1.9 - last update 10 Apr 2010

lti::cwagmSegmentation::parameters Class Reference

the parameters for the class cwagmSegmentation More...

#include <ltiCWAGMSegmentation.h>

Inheritance diagram for lti::cwagmSegmentation::parameters:
Inheritance graph
[legend]
Collaboration diagram for lti::cwagmSegmentation::parameters:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 parameters ()
 parameters (const parameters &other)
 ~parameters ()
const char * getTypeName () const
parameterscopy (const parameters &other)
parametersoperator= (const parameters &other)
virtual functor::parametersclone () const
virtual bool write (ioHandler &handler, const bool complete=true) const
virtual bool read (ioHandler &handler, const bool complete=true)

Public Attributes

regionGraphColorHaris::parameters harisRegionMergeParam
Preprocessing



medianFilter::parameters medianParam
bool enhanceContrast
Split-Stage with Watersheds



std::string colorSplitter
colorContrastGradient::parameters colorContrastParam
watershedSegmentation::parameters watershedParam
float minProbForWatershedThreshold

Detailed Description

the parameters for the class cwagmSegmentation


Constructor & Destructor Documentation

lti::cwagmSegmentation::parameters::parameters (  ) 

default constructor

Reimplemented from lti::segmentation::parameters.

lti::cwagmSegmentation::parameters::parameters ( const parameters other  ) 

copy constructor

Parameters:
other the parameters object to be copied

Reimplemented from lti::segmentation::parameters.

lti::cwagmSegmentation::parameters::~parameters (  )  [virtual]

destructor

Reimplemented from lti::segmentation::parameters.


Member Function Documentation

virtual functor::parameters* lti::cwagmSegmentation::parameters::clone (  )  const [virtual]

returns a pointer to a clone of the parameters

Reimplemented from lti::segmentation::parameters.

parameters& lti::cwagmSegmentation::parameters::copy ( const parameters other  ) 

copy the contents of a parameters object

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

Reimplemented from lti::segmentation::parameters.

const char* lti::cwagmSegmentation::parameters::getTypeName (  )  const [virtual]

returns name of this type

Reimplemented from lti::segmentation::parameters.

parameters& lti::cwagmSegmentation::parameters::operator= ( const parameters other  ) 

copy the contents of a parameters object

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object
virtual bool lti::cwagmSegmentation::parameters::read ( ioHandler handler,
const bool  complete = true 
) [virtual]

read the parameters from the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::segmentation::parameters.

virtual bool lti::cwagmSegmentation::parameters::write ( ioHandler handler,
const bool  complete = true 
) const [virtual]

write the parameters in the given ioHandler

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from lti::segmentation::parameters.


Member Data Documentation

Parameters for the computations of the color contrast gradient.

The result is also the input for the watershed algorithm.

The colorSplitter specifies the name of the color space splitting functor used to extract the color components of the image, which are employed to analyze the edges of the image.

Default value: "lti::splitImageToXYZ"

Enhance contrast.

If set to true, the dynamic range of the channels will be optimized.

Since the RGB channels will be linearly expanded to map min(R,G,B)-max(R,G,B) to the 0-255 range, the colors of the image will not be severely altered.

Default value: true

Merging parameters for the graph representation.

Watersheds over-segment images. The high number of regions detected slows down the rest of the algorithms. Therefore a first "merging" stage is done, using an adaption of the distance measure suggested by Haris et.al. to also use color images. All adjacent regions with distances under the given threshold will be merged.

A mergeThreshold value close to zero means that only very similar regions have to be merged, while a large value indicates to be much more tolerant while merging and many regions will be merged.

The threshold indicated within this parameter objects indicate a square distance between mean values in the color space weighted by the area of the regions, so that this value will be between 0 and about 1000000, depending on the regions detected. You will usually give values between 0 and 2000

Default: harisRegionMergeParam::mergeThreshold = 1 harisRegionMergeParam::minRegionNumber = 10

A median filter with following parameters is used to denoise the image.

If you don't want any pre-smoothing, indicate a kernel size of 1 or zero and nothing will be done.

Default value: medianParam::kernelSize = 3; medianParam::boundaryType = Constant;

To compute which threshold should be used in the watershed segmentation, the accumulative histogram of gradient values will be used as a probability distribution.

It will be assumed that the probability for a gradient value to be relevant must be greater than the given value.

If you set a value close to zero, almost any gradient value will be detected as edge, and an oversegmentation will be produced.

If you set a value close to one, then only very strong gradient values will be considered, causing an undersegmentation.

The automatic threshold computation will be done only if the user set the watershedParam.threshold to 255.

The value range must be between 0.0f and 1.0f

Default value: 0.45f

Watershed transform parameters.

Default: Rainfall method is selected as default and a 8-Neighborhood. The threshold is set to 255 to activate the automatic threshold detection.


The documentation for this class was generated from the following file:

Generated on Sat Apr 10 15:27:12 2010 for LTI-Lib by Doxygen 1.6.1