latest version v1.9 - last update 10 Apr 2010 |
00001 /* 00002 * Copyright (C) 2002, 2003, 2004, 2005, 2006 00003 * Lehrstuhl fuer Technische Informatik, RWTH-Aachen, Germany 00004 * 00005 * This file is part of the LTI-Computer Vision Library (LTI-Lib) 00006 * 00007 * The LTI-Lib is free software; you can redistribute it and/or 00008 * modify it under the terms of the GNU Lesser General Public License (LGPL) 00009 * as published by the Free Software Foundation; either version 2.1 of 00010 * the License, or (at your option) any later version. 00011 * 00012 * The LTI-Lib is distributed in the hope that it will be 00013 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 00014 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 * GNU Lesser General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU Lesser General Public 00018 * License along with the LTI-Lib; see the file LICENSE. If 00019 * not, write to the Free Software Foundation, Inc., 59 Temple Place - 00020 * Suite 330, Boston, MA 02111-1307, USA. 00021 */ 00022 00023 00024 /*-------------------------------------------------------------------- 00025 * project ....: LTI-Lib: Image Processing and Computer Vision Library 00026 * file .......: ltiSchieleCrowley6DFeature.h 00027 * authors ....: Pablo Alvarado 00028 * organization: LTI, RWTH Aachen 00029 * creation ...: 27.3.2002 00030 * revisions ..: $Id: ltiSchieleCrowley6DFeature.h,v 1.9 2006/02/08 11:48:48 ltilib Exp $ 00031 */ 00032 00033 #ifndef _LTI_SCHIELE_CROWLEY6_D_FEATURE_H_ 00034 #define _LTI_SCHIELE_CROWLEY6_D_FEATURE_H_ 00035 00036 00037 #include "ltiObject.h" 00038 00039 #include <list> 00040 00041 #include "ltiContour.h" 00042 #include "ltiImage.h" 00043 #include "ltiLocalFeatureExtractor.h" 00044 #include "ltiGlobalFeatureExtractor.h" 00045 #include "ltiLocation.h" 00046 00047 namespace lti { 00048 /** 00049 * This functor create huge lists of local features, that can be used 00050 * to train the multidimensional receptive field histograms of Schiele 00051 * and Crowley (see lti::shClassifier) 00052 * 00053 * Each vector will be usually 6 dimensional, where the even dimensions will 00054 * correspond to the pixel values of gaussian derivatives in 00055 * x-direction and the odd dimensions will correspond to the y-direction. 00056 * 00057 * Each pair of dimensions will correspond to one resolution or scale, where 00058 * the std. deviation of the gaussians between the levels will be related 00059 * by a factor 2. 00060 * 00061 * More information on the features and classification approach can be 00062 * taken from the original paper: 00063 * 00064 * B. Schiele and J. Crowley. Recognition without correspondence using 00065 * multidimensional receptive field histograms. Technical Report No. 453 00066 * MIT Medial Laboratory, Perceptial Computing Section. 00067 */ 00068 class schieleCrowley6DFeature : public localFeatureExtractor, 00069 public globalFeatureExtractor { 00070 public: 00071 /** 00072 * the parameters for the class schieleCrowley6DFeature 00073 */ 00074 class parameters : public localFeatureExtractor::parameters, 00075 public globalFeatureExtractor::parameters { 00076 public: 00077 /** 00078 * default constructor 00079 */ 00080 parameters(); 00081 00082 /** 00083 * copy constructor 00084 * @param other the parameters object to be copied 00085 */ 00086 parameters(const parameters& other); 00087 00088 /** 00089 * destructor 00090 */ 00091 ~parameters(); 00092 00093 /** 00094 * returns name of this type 00095 */ 00096 const char* getTypeName() const; 00097 00098 /** 00099 * copy the contents of a parameters object 00100 * @param other the parameters object to be copied 00101 * @return a reference to this parameters object 00102 */ 00103 parameters& copy(const parameters& other); 00104 00105 /** 00106 * copy the contents of a parameters object 00107 * @param other the parameters object to be copied 00108 * @return a reference to this parameters object 00109 */ 00110 parameters& operator=(const parameters& other); 00111 00112 00113 /** 00114 * returns a pointer to a clone of the parameters 00115 */ 00116 virtual functor::parameters* clone() const; 00117 00118 /** 00119 * write the parameters in the given ioHandler 00120 * @param handler the ioHandler to be used 00121 * @param complete if true (the default) the enclosing begin/end will 00122 * be also written, otherwise only the data block will be written. 00123 * @return true if write was successful 00124 */ 00125 virtual bool write(ioHandler& handler,const bool complete=true) const; 00126 00127 /** 00128 * read the parameters from the given ioHandler 00129 * @param handler the ioHandler to be used 00130 * @param complete if true (the default) the enclosing begin/end will 00131 * be also written, otherwise only the data block will be written. 00132 * @return true if write was successful 00133 */ 00134 virtual bool read(ioHandler& handler,const bool complete=true); 00135 00136 # ifdef _LTI_MSC_6 00137 /** 00138 * this function is required by MSVC only, as a workaround for a 00139 * very awful bug, which exists since MSVC V.4.0, and still by 00140 * V.6.0 with all bugfixes (so called "service packs") remains 00141 * there... This method is also public due to another bug, so please 00142 * NEVER EVER call this method directly: use read() instead 00143 */ 00144 bool readMS(ioHandler& handler,const bool complete=true); 00145 00146 /** 00147 * this function is required by MSVC only, as a workaround for a 00148 * very awful bug, which exists since MSVC V.4.0, and still by 00149 * V.6.0 with all bugfixes (so called "service packs") remains 00150 * there... This method is also public due to another bug, so please 00151 * NEVER EVER call this method directly: use write() instead 00152 */ 00153 bool writeMS(ioHandler& handler,const bool complete=true) const; 00154 # endif 00155 00156 // ------------------------------------------------ 00157 // the parameters 00158 // ------------------------------------------------ 00159 00160 /** 00161 * Standard deviation for the first resolution 00162 * 00163 * Default value: 2 00164 */ 00165 double sigma; 00166 00167 /** 00168 * Number of resolutions used. Schiele and Crowley suggest 3 00169 * 00170 * Default value: 3 00171 */ 00172 int numResolutions; 00173 00174 }; 00175 00176 /** 00177 * default constructor 00178 */ 00179 schieleCrowley6DFeature(); 00180 00181 /** 00182 * copy constructor 00183 * @param other the object to be copied 00184 */ 00185 schieleCrowley6DFeature(const schieleCrowley6DFeature& other); 00186 00187 /** 00188 * destructor 00189 */ 00190 virtual ~schieleCrowley6DFeature(); 00191 00192 /** 00193 * returns the name of this type ("schieleCrowley6DFeature") 00194 */ 00195 virtual const char* getTypeName() const; 00196 00197 /** @name slow apply methods 00198 * 00199 * Use these methods only when you need the src channel once. To 00200 * extract feature for different regions of the same src channel, see 00201 * for example apply(channel8&,std::list<dvector>&) 00202 */ 00203 //@{ 00204 00205 /** 00206 * Get a vector for all non-zero pixels in the mask, using the gaussian 00207 * derivatives of the given channel. 00208 * @param src original channel with the source data 00209 * @param mask only the pixels in src, for which the respective pixel in 00210 * the mask is different than zero will be considered. 00211 * @param vcts the list of all feature vectors for all masked pixels 00212 * 00213 * @return true if apply successful or false otherwise. 00214 */ 00215 bool apply(const channel& src, 00216 const channel8& mask, 00217 std::list<dvector>& vcts) const; 00218 00219 00220 /** 00221 * Get a vector for all pixels in the area points. 00222 * @param src original channel with the source data 00223 * @param mask only the pixels in the mask (areaPoints list) will 00224 * be considered. 00225 * @param vcts the list of all feature vectors for all masked pixels 00226 * 00227 * @return true if apply successful or false otherwise. 00228 */ 00229 bool apply(const channel& src, 00230 const areaPoints& mask, 00231 std::list<dvector>& vcts) const; 00232 00233 /** 00234 * Get a vector for each location in the locations list. 00235 * @param src original channel with the source data 00236 * @param mask only the central pixels in the locations will 00237 * be considered. 00238 * @param vcts the list of all feature vectors for all masked pixels 00239 * 00240 * @return true if apply successful or false otherwise. 00241 */ 00242 bool apply(const channel& src, 00243 const std::list<location>& mask, 00244 std::list<dvector>& vcts) const; 00245 00246 /** 00247 * Get a vector for each non-zero pixel in the mask. 00248 * @param src original channel with the source data 00249 * @param angle reorient the gaussian derivatives with this angle 00250 * @param mask only the pixels in src, for which the respective pixel in 00251 * the mask is different than zero will be considered. 00252 * @param vcts the list of all feature vectors for all masked pixels 00253 * 00254 * @return true if apply successful or false otherwise. 00255 */ 00256 bool apply(const channel& src, 00257 const double angle, 00258 const channel8& mask, 00259 std::list<dvector>& vcts) const; 00260 00261 /** 00262 * Get a vector for each pixel in the areaPoint. 00263 * @param src original channel with the source data 00264 * @param angle reorient the gaussian derivatives with this angle 00265 * @param mask only the pixels in the mask (areaPoints list) will 00266 * be considered. 00267 * @param vcts the list of all feature vectors for all masked pixels 00268 * 00269 * @return true if apply successful or false otherwise. 00270 */ 00271 bool apply(const channel& src, 00272 const double angle, 00273 const areaPoints& mask, 00274 std::list<dvector>& vcts) const; 00275 00276 /** 00277 * Get a vector for each location in the locations list. 00278 * @param src original channel with the source data 00279 * @param angle reorient the gaussian derivatives with this angle 00280 * @param mask only the central pixels of the locations will 00281 * be considered. 00282 * @param vcts the list of all feature vectors for all masked pixels 00283 * 00284 * @return true if apply successful or false otherwise. 00285 */ 00286 bool apply(const channel& src, 00287 const double angle, 00288 const std::list<location>& mask, 00289 std::list<dvector>& vcts) const; 00290 00291 //@} 00292 00293 /** 00294 * @name fast apply methods. 00295 * 00296 * All these apply methods use the internal computed gaussian derivatives. 00297 * Before calling these methods you need therefore to specify your channel 00298 * with the method use(). 00299 * 00300 * This approach is very fast when extracting different feature sets for 00301 * the same image (for example, feature sets for each object in the image) 00302 * 00303 * In this case you specify once with use() which channel you want to 00304 * use, and after that, you can call the apply method for each 00305 * object found in the image. This way, the expensive filters will be 00306 * applied just one, and the feature extraction is faster. 00307 */ 00308 //@{ 00309 00310 /** 00311 * indicates the channel to be used. This will allow a pre-computation 00312 * of the gaussian derivatives, that allow a faster analysis of image 00313 * regions. 00314 */ 00315 bool use(const channel& chnl); 00316 00317 /** 00318 * Before calling this method, you need to specify your channel with 00319 * use(const channel&) 00320 * @param mask only the pixels in src, for which the respective pixel in 00321 * the mask is different than zero will be considered. 00322 * @param vcts the list of all feature vectors for all masked pixels 00323 * 00324 * @return true if apply successful or false otherwise. 00325 */ 00326 bool apply(const channel8& mask, 00327 std::list<dvector>& vcts) const; 00328 00329 /** 00330 * Before calling this method, you need to specify your channel with 00331 * use(const channel&) 00332 * @param mask only the pixels in the mask (areaPoints list) will 00333 * be considered. 00334 * @param vcts the list of all feature vectors for all masked pixels 00335 * 00336 * @return true if apply successful or false otherwise. 00337 */ 00338 bool apply(const areaPoints& mask, 00339 std::list<dvector>& vcts) const; 00340 00341 /** 00342 * Before calling this method, you need to specify your channel with 00343 * use(const channel&) 00344 * @param mask only the central pixels in the locations will 00345 * be considered. 00346 * @param vcts the list of all feature vectors for all masked pixels 00347 * 00348 * @return true if apply successful or false otherwise. 00349 */ 00350 bool apply(const std::list<location>& mask, 00351 std::list<dvector>& vcts) const; 00352 00353 /** 00354 * Before calling this method, you need to specify your channel with 00355 * use(const channel&) 00356 * @param angle reorient the gaussian derivatives with this angle 00357 * @param mask only the pixels in src, for which the respective pixel in 00358 * the mask is different than zero will be considered. 00359 * @param vcts the list of all feature vectors for all masked pixels 00360 * 00361 * @return true if apply successful or false otherwise. 00362 */ 00363 bool apply(const double angle, 00364 const channel8& mask, 00365 std::list<dvector>& vcts) const; 00366 00367 /** 00368 * Before calling this method, you need to specify your channel with 00369 * use(const channel&) 00370 * @param angle reorient the gaussian derivatives with this angle 00371 * @param mask only the pixels in the mask (areaPoints list) will 00372 * be considered. 00373 * @param vcts the list of all feature vectors for all masked pixels 00374 * 00375 * @return true if apply successful or false otherwise. 00376 */ 00377 bool apply(const double angle, 00378 const areaPoints& mask, 00379 std::list<dvector>& vcts) const; 00380 00381 /** 00382 * Before calling this method, you need to specify your channel with 00383 * use(const channel&) 00384 * @param angle reorient the gaussian derivatives with this angle 00385 * @param mask only the central pixels of the locations will 00386 * be considered. 00387 * @param vcts the list of all feature vectors for all masked pixels 00388 * 00389 * @return true if apply successful or false otherwise. 00390 */ 00391 bool apply(const double angle, 00392 const std::list<location>& mask, 00393 std::list<dvector>& vcts) const; 00394 00395 //@} 00396 00397 /** 00398 * copy data of "other" functor. 00399 * @param other the functor to be copied 00400 * @return a reference to this functor object 00401 */ 00402 schieleCrowley6DFeature& copy(const schieleCrowley6DFeature& other); 00403 00404 /** 00405 * alias for copy member 00406 * @param other the functor to be copied 00407 * @return a reference to this functor object 00408 */ 00409 schieleCrowley6DFeature& operator=(const schieleCrowley6DFeature& other); 00410 00411 /** 00412 * returns a pointer to a clone of this functor. 00413 */ 00414 virtual functor* clone() const; 00415 00416 /** 00417 * returns used parameters 00418 */ 00419 const parameters& getParameters() const; 00420 00421 protected: 00422 /** 00423 * get the basis channels for the channel chnl, assuming a 00424 * gaussian with std. deviation sigma. 00425 */ 00426 void getBasisChannels(const channel& chnl, 00427 const double sigma, 00428 channel& Dx, 00429 channel& Dy) const; 00430 00431 /** 00432 * the set of channels internally used. 00433 */ 00434 channel* chnls; 00435 00436 }; 00437 } 00438 00439 #endif