latest version v1.9 - last update 10 Apr 2010 |
00001 /* 00002 * Copyright (C) 2003, 2004, 2005, 2006 00003 * Lehrstuhl fuer Technische Informatik, RWTH-Aachen, Germany 00004 * 00005 * This file is part of the LTI-Computer Vision Library (LTI-Lib) 00006 * 00007 * The LTI-Lib is free software; you can redistribute it and/or 00008 * modify it under the terms of the GNU Lesser General Public License (LGPL) 00009 * as published by the Free Software Foundation; either version 2.1 of 00010 * the License, or (at your option) any later version. 00011 * 00012 * The LTI-Lib is distributed in the hope that it will be 00013 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 00014 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 * GNU Lesser General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU Lesser General Public 00018 * License along with the LTI-Lib; see the file LICENSE. If 00019 * not, write to the Free Software Foundation, Inc., 59 Temple Place - 00020 * Suite 330, Boston, MA 02111-1307, USA. 00021 */ 00022 00023 00024 /*---------------------------------------------------------------- 00025 * project ....: LTI Digital Image/Signal Processing Library 00026 * file .......: ltiLaplacianKernel.h 00027 * authors ....: Pablo Alvarado 00028 * organization: LTI, RWTH Aachen 00029 * creation ...: 17.11.2003 00030 * revisions ..: $Id: ltiHessianKernels.h,v 1.3 2006/02/08 11:15:34 ltilib Exp $ 00031 */ 00032 00033 #ifndef _LTI_HESSIAN_KERNELS_H_ 00034 #define _LTI_HESSIAN_KERNELS_H_ 00035 00036 #include "ltiLinearKernels.h" 00037 00038 namespace lti { 00039 /** 00040 * Two-dimensional kernels to compute the Hessian coefficients. 00041 * 00042 * The Hessian coefficients at a pixel correspond to the second derivatives. 00043 * There are for images three cases: 00044 * - \f$\frac{\partial^2 f(x,y)}{\partial x^2}\f$ 00045 * - \f$\frac{\partial^2 f(x,y)}{\partial y^2}\f$ 00046 * - \f$\frac{\partial^2 f(x,y)}{\partial x \partial y}\f$ 00047 * 00048 * The 3x3 is the kernels to compute this are: 00049 * - For \f$\frac{\partial^2 f(x,y)}{\partial x^2}\f$ 00050 * \code 00051 * 0.1 -0.2 0.1 00052 * 0.3 -0.6 0.3 00053 * 0.1 -0.2 0.1 00054 * \endcode 00055 * 00056 * - For \f$\frac{\partial^2 f(x,y)}{\partial y^2}\f$ 00057 * \code 00058 * 0.1 0.3 0.1 00059 * -0.2 -0.6 -0.2 00060 * 0.1 0.3 0.1 00061 * \endcode 00062 * 00063 * - For \f$\frac{\partial^2 f(x,y)}{\partial x \partial y}\f$ 00064 * \code 00065 * 0.125 0 -0.125 00066 * 0 0 0 00067 * -0.125 0 0.125 00068 * \endcode 00069 * 00070 * These kernels are separable and therefore implemented that way. 00071 * 00072 * @ingroup gLinearFilters 00073 * 00074 * This kernel implements \f$\frac{\partial^2 f(x,y)}{\partial x^2}\f$ 00075 */ 00076 class hessianKernelXX : public sepKernel<float> { 00077 public: 00078 /** 00079 * Constructor 00080 */ 00081 hessianKernelXX(); 00082 00083 /** 00084 * Initialize this kernel. 00085 */ 00086 void generate(); 00087 }; 00088 00089 /** 00090 * Two-dimensional kernels to compute the Hessian coefficients. 00091 * 00092 * The Hessian coefficients at a pixel correspond to the second derivatives. 00093 * There are for images three cases: 00094 * - \f$\frac{\partial^2 f(x,y)}{\partial x^2}\f$ 00095 * - \f$\frac{\partial^2 f(x,y)}{\partial y^2}\f$ 00096 * - \f$\frac{\partial^2 f(x,y)}{\partial x \partial y}\f$ 00097 * 00098 * The 3x3 is the kernels to compute this are: 00099 * - For \f$\frac{\partial^2 f(x,y)}{\partial x^2}\f$ 00100 * \code 00101 * 0.1 -0.2 0.1 00102 * 0.3 -0.6 0.3 00103 * 0.1 -0.2 0.1 00104 * \endcode 00105 * 00106 * - For \f$\frac{\partial^2 f(x,y)}{\partial y^2}\f$ 00107 * \code 00108 * 0.1 0.3 0.1 00109 * -0.2 -0.6 -0.2 00110 * 0.1 0.3 0.1 00111 * \endcode 00112 * 00113 * - For \f$\frac{\partial^2 f(x,y)}{\partial x \partial y}\f$ 00114 * \code 00115 * 0.125 0 -0.125 00116 * 0 0 0 00117 * -0.125 0 0.125 00118 * \endcode 00119 * 00120 * These kernels are separable and therefore implemented that way. 00121 * 00122 * @ingroup gLinearFilters 00123 * 00124 * This kernel implements \f$\frac{\partial^2 f(x,y)}{\partial y^2}\f$ 00125 */ 00126 class hessianKernelYY : public sepKernel<float> { 00127 public: 00128 /** 00129 * Constructor 00130 */ 00131 hessianKernelYY(); 00132 00133 /** 00134 * Initialize this kernel. 00135 */ 00136 void generate(); 00137 }; 00138 00139 00140 /** 00141 * Two-dimensional kernels to compute the Hessian coefficients. 00142 * 00143 * The Hessian coefficients at a pixel correspond to the second derivatives. 00144 * There are for images three cases: 00145 * - \f$\frac{\partial^2 f(x,y)}{\partial x^2}\f$ 00146 * - \f$\frac{\partial^2 f(x,y)}{\partial y^2}\f$ 00147 * - \f$\frac{\partial^2 f(x,y)}{\partial x \partial y}\f$ 00148 * 00149 * The 3x3 is the kernels to compute this are: 00150 * - For \f$\frac{\partial^2 f(x,y)}{\partial x^2}\f$ 00151 * \code 00152 * 0.1 -0.2 0.1 00153 * 0.3 -0.6 0.3 00154 * 0.1 -0.2 0.1 00155 * \endcode 00156 * 00157 * - For \f$\frac{\partial^2 f(x,y)}{\partial y^2}\f$ 00158 * \code 00159 * 0.1 0.3 0.1 00160 * -0.2 -0.6 -0.2 00161 * 0.1 0.3 0.1 00162 * \endcode 00163 * 00164 * - For \f$\frac{\partial^2 f(x,y)}{\partial x \partial y}\f$ 00165 * \code 00166 * 0.125 0 -0.125 00167 * 0 0 0 00168 * -0.125 0 0.125 00169 * \endcode 00170 * 00171 * These kernels are separable and therefore implemented that way. 00172 * 00173 * @ingroup gLinearFilters 00174 * 00175 * This kernel implements 00176 * \f$\frac{\partial^2 f(x,y)}{\partial x \partial y}\f$ 00177 */ 00178 class hessianKernelXY : public sepKernel<float> { 00179 public: 00180 /** 00181 * Constructor 00182 */ 00183 hessianKernelXY(); 00184 00185 /** 00186 * Initialize this kernel. 00187 */ 00188 void generate(); 00189 }; 00190 00191 00192 00193 00194 } 00195 #endif